Выставка "Газовые турбины"

Выставка действует в помещении ФБУ "РНТПБ" с 25.02.2016 г. по 08.03.2016 г.

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки?
России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков – "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.
Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае. А начиналось все так просто…
Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями. Рождение газовых турбин Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.
Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.
Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.
Есть у газотурбинных двигателей и недостатки. Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры. Охлаждение газовых турбин – сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.
Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого – газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие… Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись. Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.
Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.
Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.
Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.
Представленные издания:

1. Гецов Л.Б. Материалы и прочность газовых турбин.

2. Цанев С.В., Буров В.Д., Земцов А.С., Осыка А.С. Газотурбинные энергетические установки.

3. Шигапов А.Б. Стационарные газотурбинные установки тепловых электрических станций.

4. Шабаров А.Б., Шалай В.В., Земенков Ю.Д., Акулов К.А., Чекардовский С.М. Устройство и эксплуатация газотурбинных установок.

5. Тунаков А.П., Кривошеев И.А., Ахмедзянов Д.А. САПР газотурбинных двигателей.

6. Лапшин К.Л. Оптимизация проточных частей паровых и газовых турбин.

Выставка "КАБЕЛИ И ПРОВОДА"

Выставка действует в помещении ФБУ "РНТПБ" с 09.01.2019 г. по 13.01.2019 г.

Современная кабельная промышленность располагает обширным ассортиментом различных проводов. И каждый вид провода предназначен для решения определенного круга задач.
Часто употребляют слова «провод» и «кабель», как синонимы. Эти два изделия имеют схожий внешний вид, но это не значит, что они совершенно одинаковые. Визуально они похожи, и с этим не поспоришь. Обычному потребителю вряд ли удастся визуально определить, какое изделие у него в руках.
В то время как специалист по электронике, электротехнике или другой профессионал, который по роду своей деятельности имеет дело с электричеством, без труда назовет отличие кабеля от провода. Возможно, некоторые обычные пользователи также способны понять суть этого отличия благодаря интуиции. Но сформулировать четко смогут не все.
Что представляет собой провод? В электротехнике так называют многожильный или одножильный проводник, который имеет легкую трубчатую изоляцию, либо вовсе ее не имеет.
Кабель представляет собой систему изолированных проводников, которые для удобства монтажа и эксплуатации, а также для защиты от влияния окружающей среды и механических повреждений объединены в единую конструкцию. Для повышения безопасности использования электрических проводов, для облегчения их совместной прокладки, для обеспечения защиты при эксплуатации в сложных условиях электрические провода собирают вместе. На них «одевается» дополнительный слой изоляции. Кабель защищают броневым кожухом при необходимости.

Представленные издания:

1. Гудков В.В. Кабели. Номенклатура, выбор, эксплуатация: справ. пособие / В.В. Гудков; Моск. ин-т энергобезопасности энергосбережения. - Изд. 2-е - М.: МИЭЭ, 2009. - 216 с.: ил.

2. Кабели. Провода. Материалы для кабельной индустрии: техн. справ. / [сост. В.Ю. Кузенев, О.В. Крехова]. -3-е изд. - М.: Нефть и газ, 2006. - 360 с.: ил.

3. Кранихфельд Л.И. Кабели управления и контрольные / Л.И. Кранихфельд, С.Б. Веселовский, В.Г. Фролов; под общ. ред. Л.И. Кранихфельда. - М.: Энергия, 1975. - 192 с.: ил.

4. Ларина Э.Т. Силовые кабели и кабельные линии: учеб. пособие / Э.Т. Ларина. - М.: Энергоатомиздат, 1984. - 368 с.: ил.

5. Овчаренко А.С. Проектирование и строительство кабельных линий / А.С. Овчаренко, М.С. Цейтлин. - Киев: Будiвельник, 1984. - 120 с.: ил.

6. Основные вопросы проектирования воздушных линий электропередач: учеб. пособие / Ф.Р. Исмагилов [и др.]. - М.: Машиностроение, 2015. - 211 с.: ил.

7. Пешков И.Б. Материалы кабельного производства / И.Б. Пешков.- М.: Машиностроение, 2013. - 456 с.: ил.

8. Сучков В.Ф. Жаропрочные кабели с минеральной изоляцией / В.Ф. Сучков, В.И. Светлова, Э.Э. Финкель. - 2-е изд., переработ. и доп. - М.: Энергоатомиздат, 1984. - 120 с.: ил.

9. Уиди Б. Кабельные линии высокого напряжения: пер. с англ / Б. Уиди. - М.: Энергоатоиздат, 1983. - 232 с.: ил.

10. Яковлев Л.В. Пляска проводов на воздушных линиях электропередачи и способы борьбы с нею / Л.В. Яковлев - М.: Энергопрогресс, 2002. - 96 с.: ил. - (Б-ка электротехника. Вып.11(47).

Выставка "ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 14.01.2019 г. по 20.01.2019 г.

Охрана окружающей среды — система мер, направленных на обеспечение благоприятных и безопасных условий среды обитания и жизнедеятельности человека. Важнейшие факторы окружающей среды — атмосферный воздух, воздух жилищ, вода, почва. Охрана окружающей среды предусматривает сохранение и восстановление природных ресурсов с целью предупреждения прямого и косвенного отрицательного воздействия результатов деятельности человека на природу и здоровье людей.
В условиях научно-технического прогресса и интенсификации промышленного производства проблемы охраны окружающей среды стали одной из важнейших общегосударственных задач, решение которых неразрывно связано с охраной здоровья людей. Долгие годы процессы ухудшения окружающей среды были обратимыми, т.к. затрагивали лишь ограниченные участки, отдельные районы и не носили глобального характера, поэтому эффективные меры по защите среды обитания человека практически не принимались. В последние же 20—30 лет в различных районах Земли начали появляться необратимые изменения природной среды или возникать опасные явления. В связи с массированным загрязнением окружающей среды вопросы ее охраны из региональных, внутригосударственных выросли в международную, общепланетарную проблему. Все развитые государства определили охрану окружающей среды одним из наиболее важных. При решении вопросов, связанных с охраной окружающей среды, следует учитывать, что человек с самого рождения и в течение всей своей жизни подвергается воздействию различных факторов (контакт с химическими веществами в быту, на производстве, употребление лекарств, попадание в организм химических добавок, содержащихся в пищевых продуктах, и др.). Дополнительное воздействие вредных веществ, поступающих в окружающую среду, в частности с промышленными отходами, может оказать отрицательное воздействие на состояние здоровья людей.

Представленные издания:

1. Мельников А.А. Проблемы окружающей среды и стратегия ее сохранения: учеб. пособие / А.А. Мельников. - М.: Гаудеамус: Академический проект, 2009. - 720 с. + 24 цв. вкл.: ил.

2. Молодцова Е.С. Охрана окружающей среды и международное регулирование мирной ядерной деятельности / Е. С. Молодцова. - М.: Изд. фирма "Туров", 2000. - 224 с.: ил.

3. Новиков Ю.В. Экология, окружающая среда и человек: учеб. пособие / Ю.В. Новиков. - М.: ФАИР-ПРЕСС, 2000. - 320 с.: ил.

4. Охрана окружающей среды: учеб. / С.В. Белов [и др.]; под ред. С.В. Белова - 2-е изд., испр. и доп. - М.: Высш. шк., 1991. - 319 с.: ил.

5. Охрана природы и воспроизводство природных ресурсов. Т. 31. Природные и антропогенные источники загрязнения атмосферы / [авт. текста В.С. Савенко, гл. ред. В.Е. Соколов]; Всесоюз. ин-т науч. и техн. информ. (ВИНИТИ). - М.: ВИНИТИ, 1991. - 212 с.: цв. ил. - (Итоги науки и техники. Охрана природы и воспроизводство природных ресурсов).

6. Протасова В.Ф. Экология, охраны природы. Законы, кодексы, платежи. Показатели, нормативы. Госты. Экологическая доктрина. Киотский протокол. Термины и понятия. Экологическое право: учеб. пособие / В.Ф. Протасова. - 2-е изд., переработ. и доп. - М.: Финансы и статистика, 2006. - 380 с.: ил.

7. Снакин В.В. Экология и охрана природы: слов.-справ. / В.В. Снакин; под ред. А.Л Яншина. - М.: Academia, 2000. - 384 с.: ил.

8. Тупов В.Б. Факторы физического воздействия ТЭС на окружающую среду: учеб. пособие / В.Б. Тупов; Нац. исслед. ун-т "МЭИ". - М.: МЭИ, 2012. - 284 с.: ил.

9. Цгоев Т.Ф. Элементы управления экологической безопасностью на предприятиях и организациях: учеб. пособие / Т.Ф. Цгоев, В.Г. Кокоев; Сев.-Кав. горно-металлург. ин-т (СКГМИ); Гос. технолог. ун-т (ГТУ). - Владикавказ: СКГМИ (ГТУ), 2012. - 342 с.: ил.

10.Черенцова А.А. Состояние окружающей среды в зоне влияния золоотвалов теплоэлектростанции / А.А. Черенцова, Л.П. Майорова, Т.И. Матвеенко; М-во образования и науки РФ; Тихоокеан. гос. ун-т (ТОГУ).- Хабаровск: Изд-во ТОГУ, 2013. - 123 с.: ил.

Выставка "ТРЕНИЕ И ИЗНОС"

Выставка действует в помещении ФБУ "РНТПБ" с 21.01.2019 г. по 27.01.2019 г.

В зависимости от кинематических признаков относительного перемещения тел различают следующие виды трения: трение скольжения, трение качения и трение верчения.
Наименее изученным является трение верчения, поэтому при решении практических задач этот род трения стараются свести к трению скольжения или качения.
При относительном перемещении деформирующихся тел касание между ними происходит не в точках, а в зонах, называемых площадками контакта. На этих площадках контакта могут происходить весьма разнообразные физико-механические явления, например: упругие и пластические деформации частиц, молекулярное сцепление частиц, адсорбция тонких слоев газа, дисперсность коллоидальных частиц и др. Некоторые ученые при изучении этого вопроса насчитали более 20 таких явлений, причем, многие из них оказались во взаимной связи. Количественные и качественные соотношения между этими явлениями, происходящими на упругих площадках двух соприкасающихся (трущихся) тел, в значительной степени зависят от наличия между ними жидкостной или газообразной прослойки — смазки.
Трение и износ тесно связаны между собой. Износ есть результат работы трения. По утверждению ряда ученых, работающих в этой области, до настоящего времени общепризнанного определения износа трением в технической литературе еще нет. Износы, появляющиеся при эксплуатации машин, можно подразделить на естественные и аварийные.
Естественные износы деталей машин происходят в результате действия сил трения и определяются условиями работы деталей, качеством материала, характером обработки и др. Эти износы являются неизбежными и появляются в результате относительно длительного периода работы машины.
Аварийные износы являются результатом быстро нарастающего естественного износа и нарушения нормального режима работы машины, нарушения правил технического ухода, эксплуатации и ремонта машин. Эти износы почти всегда характеризуются резкими деформациями деталей, разрушением отдельных узлов, агрегатов и всей машины.
Износы машин, встречающиеся на практике, весьма разнообразны по форме проявления, по причинам возникновения, характеру нарастания и многим другим признакам.
Наиболее распространенным видом естественного износа является механический износ.

Представленные издания:


1. Войнов К.Н. Проблемы и решения в вопросах трения/изнашивания: моногр./ К.Н. Войнов. - СПб.: Нестор-История, 2015. - 500 с.: ил.

2. Кабалдин Ю.Г. Самоорганизация и нелинейная динамика в процессах трения и изнашивания инструмента при резании / Ю.Г. Кабалдин; Ин-т машиноведения и металлургии ДВО РАН. - Комсомольск-на-Амуре: КнАГТУ, 2003. - 175 с.: ил.

3. Громаковский Д.Г. Исследование и расчет изнашивания деталей узлов трения машин / Д.Г. Громаковский, Л.В. Кудюров, Н.Н. Серяков. - М.: Машиностроение, 2012. - 192 с.: ил.

4. Доценко В.А. Изнашивание твердых тел / В.А. Доценко. - М.: ВНИИТЭМР, 1990. - 192 с.: ил.

5. Дроздов Ю.Н. Трение и износ в экстремальных условиях / Ю.Н. Дроздов. - М.: Машиностроение, 1986. - 224 с.: ил. - (Основы проектирования машин).

6. Куранов В.Г. Износ и безысносность / В.Г. Куранов, А.Н. Виноградов, А.С. Денисов; М-во образования и науки Рос. Федерации; Сарат. гос. техн. ун-т (СГТУ). - Саратов: Сарат. гос. техн. ун-т, 2000. - 136 с.: ил.

7. Польцер Г. Основы трения и изнашивания: пер. с рум. / Г. Польцер, Ф. Майсснер; под ред. М.Н. Добычина. - М.: Машиностроение, 1984. - 264 с.: ил.

8. Розенблат Г.М. Сухое трение и односторонние связи в механике твердого тела / Г.М. Розенблат. - М.: ЛИБРОКОМ, 2011. - 208 с.: ил.

9. Трение, износ и смазка (трибология и триботехника) / А.В. Чичинадзе [и др.]; под общ. ред. А.В. Чичинадзе. - М.: Машиностроение, 2003. - 576 с.: ил.

10. Хмелевская В.Б. Трение и износ в механизмах машиностроения: учеб пособие / В.Б. Хмелевская, Р. Качински, М.П. Лысенков. - СПб.: Изд-во СПбПУ, 2014. - 191 с.: ил.

11. Хрущев М.М. Трение, износ и микротвердость материалов. Избранные работы (к 120-летию со дня рождения) / М.М. Хрущов; отв. ред. И.Г. Горячева; Ин-т машиноведения им. А.А.Благонравова АН СССР. - М.: КРАСАНД, 2011. - 512 с.: ил.

Выставка "Режущий инструмент"

Выставка действует в помещении ФБУ "РНТПБ" с 23.01.2019 г. по 29.01.2019 г.

Инструмент режущий является самым необходимым оборудованием в современном производстве. Одним из основных металлообрабатывающих режущих инструментов является фреза, на которой нарезаются зубья в виде лезвий, играющие в процессе работы основную роль. Токарный режущий инструмент, как упоминалось выше, прошел многовековое усовершенствование, и сегодня выполняет обработку изделий с помощью точения или путем резания во вращающемся режиме.
Основой режущего инструмента станка является резец, сверло, всевозможные развертки, специальные головки для нарезания резьбы и разные другие инструменты. Обработка металла резцом подобна расклиниванию, а сам резец – клину. Резцы бывают различных назначений и имеют разнообразную форму. Они затачиваются под разным углом, в зависимости от того, какой материал будет обрабатываться. Закрепляется инструмент режущий в резцедержателе так, чтобы режущая кромка совпадала с уровнем оси шпинделя. Резцы должны быть тверже обрабатываемой заготовки и не должны
уменьшаться от нагревания.

Представленные издания:

1. Адаскин А.М. Современный режущий инструмент: учеб. пособие / А.М. Адаскин, Н.В. Колесов - 4 изд., стер. - М.: Академия, 2016. - 224 с.: ил.

2. Боровский Г.В. Справочник инструментальщика: справ. / Г.В. Боровский, С.Н. Григорьев, А.В. Маслов; под общ. ред А.Р. Маслова. - М.: Машиностроение, 2007. - 464 с.: ил.

3. Влияние внутренних напряжений на показатели качества сборных режущих инструментов: учеб. пособие / Е.В. Артамонов [и др.]; Тюм. гос. нефтегаз. ун-т (ТюмГНГУ). - Тюмень: ТюмГНГУ, 2016. - 266 с.: ил.

4. Выбор состава и структуры износостойких наноструктурных покрытий для твердосплавного режущего инструмента на основе квантово-механического моделирования: учеб. пособие / Ю.Г. Кабалдин [и др.]. - М.: Инновационное машиностроение, 2017. - 216 с.: ил. - (Для вузов).

5. Лобанов Д.В. Подготовка режущего инструмента для обработки композиционных материалов / Д.В. Лобанов, А.С. Янюшкин; Братский гос. ун-т (БрГУ). - Братск: ГОУ ВПО БрГУ, 2011. - 192 с.: ил.

6. Малышев В.И. Технология изготовления режущего инструмента: учеб. пособие / В.И. Малышев. - Старый Оскол: ТНТ, 2015. - 440 с.: ил.

7. Мокрицкий Б.Я. Управление эффективностью применения металлорежущего инструмента: моногр. / Б.Я. Мокрицкий, Т.И. Усова, Я.В. Конюхова; ФГБОУ ВО "КнАГТУ". - Комсомольск-на-Амуре: КнАГТУ, 2017. - 261 с.: ил.

8.Проектирование металлообрабатывающих инструментов: учеб. пособие / А.Г. Схиртладзе [и др.]. - 2-е изд., стер. -СПб: Лань, 2015. - 256 с.: ил. - (Учебники для вузов. Специальная литература).)

9. Проектирование режущих инструментов: учеб. пособие для вузов / В.А. Гречишников [и др.]; Старый Оскол: ТНТ, 2012. - 300 с.: ил. - (Тонкие наукоемкие технологии).

10. Режущие инструменты: учеб. пособие для вузов / В.А. Гречишников [и др.]. - Старый Оскол: ТНТ, 2009. - 388 с.: ил. - (Тонкие наукоемкие технологии).

11. Режущий инструмент: учеб. для вузов / Д.В. Кожевников [и др.]; под общ. ред. С.В. Кирсанова. - 4-е изд. переработ. и доп. - М.: Машиностроение, 2014. - 520 с.: ил. - (Для вузов.)

12. Солоненко В.Г. Упрочнение металлорежущего инструмента: учеб. пособие для вузов / В.Г. Солоненко, А.А. Рыжкин. - М.: Высш. шк., 2007. - 414 с.: ил. - (Для вузов).

13. Фельдштейн Е.Э. Режущий инструменты. Эксплуатация: учеб. пособие для вузов / Е.Э. Фельдштейн, М.А. Корниевич. - Минск; М.: Новое знание: ИНФРА-М, 2014. - 256 с.: ил. - (Высшее профессиональное образование. Бакалавриат).

Выставка "ЛИТЕЙНОЕ ПРОИЗВОДСТВО"

Выставка действует в помещении ФБУ "РНТПБ" с 28.01.2019 г. по 03.02.2019 г.

Литейное производство — отрасль машиностроения, занимающаяся изготовлением фасонных деталей и заготовок путём заливки расплавленного металла в форму, полость которой имеет конфигурацию требуемой детали.
В процессе литья, при охлаждении металл в форме затвердевает и получается отливка — готовая деталь или заготовка, которая при необходимости (повышение точности размеров и снижения шероховатости поверхности) подвергается последующей механической обработке. В связи с этим перед литейным производством стоит задача получения отливок, размеры и форма которых максимально приближена к размерам и форме готовой детали. В машинах и промышленном оборудовании от 50% до 95% всех деталей изготовляют способом литья в формы.
Для изготовления отливок в разовых песчаных формах необходима специальная литейная оснастка, от конструкции и качества которой в значительной мере зависит качество и трудоемкость производства литья.
Литейная оснастка по своей роли в процессе изготовления отливок подразделяется на формообразующую (основную) и универсальную (вспомогательную).
Формообразующая оснастка представляет собой модельный комплект, в который входят: модели, стержневые ящики, элементы литниковой системы, модельные плиты, шаблоны для изготовления форм и стержней.
Модель - приспособление для получения внутренних рабочих поверхностей в литейной песчаной форме, которые после заполнения расплавом образуют отливку.

Представленные издания:

1. Время. События. Люди. Череповецкий литейно-механический завод [текст Ю.Р. Лаврушина, В.В. Грибанова]. - Череповец: ЧЛМЗ, 2016. - 175 с.: цв. ил.

2. Гольдберг И.Е. Путь оптимизации литьевой оснастки: Её величество литьевая форма / И.Е. Гольдберг. - СПб.: НОТ, 2009. - 288 с.: ил. - (Золотой фонд конструктора).

3. Дубровин В.К. Применение отработанного динаса в литье по выплавляемым моделям: моногр. / В.К. Дубровин, А.В. Карпинский, О.М. Пашнина; М-во образования Рос. Федерации; Юж.-Урал. гос. ун-т (ЮУрГУ). - Челябинск: ЮУрГУ, 2009. - 116 с.: ил.

4. Евлампиев А.А. Основы литейного производства: учеб. пособие / А.А. Евлампиев, Л.А. Иванова, А.В. Королев. - Чебоксары: Изд-во ЧГУ, 2014. - 506 с.: ил.

5. Евстифеев Е.Н. Модифицированные лигносульфонаты и смолы для литейных стержней и форм: моногр. / Е.Н. Евстифеев; Донской гос. техн. ун-т (ДГТУ). - Ростов н/Д.: ДГТУ, 2011. - 393 с.: ил. - (Литейное производство).

6. Литейные формовочные материалы. Формовочные стержневые смеси и покрытия: справ. / А.Н. Болдин [и др.]. - М.: Машиностроение, 2006. - 507 с.: ил.

7. Литейные процессы: межрегион. сб. науч. тр. Вып. 15 / под ред. В.М. Колокольцева; Магнитогор. гос. техн. ун-т им Г.И. Носова (МГТУ). - Магнитогорск: МГТУ им. Г.И. Носова, 2016. - 155 с.: ил.

8. Литые материалы и ресурсосберегающие технологии: сб. тр. науч.-техн. конф., посвящен. 50-летию кафедры "Литейные процессы и конструкционные материалы". 9-12 декабря 2013 г. Владимир / под общ. ред. В.А. Кечина; Владим. гос. ун-т им. А.Г. и Н.Г. Столетовых. - Владимир: Изд-во ВлГУ, 2014. - 300 с.: ил.

9. Наседкин В.В. Некоторые аспекты использования бентонита в литейном производстве / В.В. Наседкин, Г.П. Галкин. - М.: ГЕОС, 2008. - 85 с.: ил.

10. Оборин Л.А. Технологические основы процессов изготовления литых деталей для специального машиностроения: моногр. / Л.А. Оборин, Н.М. Чернов; Сиб. гос. аэрокосм. ун-т им. М.Ф. Решетнева (СибГАУ). -Красноярск: СибГАУ, 2016. - 348 с.: ил.

11. Оптико-волоконное скопирование в литье и металлургии / А.П. Марков [и др.]; под общ. ред. Е.И. Маруковича; Нац. акад. наук Беларуси; Ин-т технологии металлов. - Минск: Белоруская навука, 2010. - 320 с.: ил.

12. Чернышов Е.А. Особенности производства стальных отливок: учеб. пособие / Е.А. Чернышов, А.А. Евлампиев. - М.: Абрис, 2012. - 383 с.: ил.

13. Швецов В.И. Технология литейного производства: моногр. / В.И. Швецовов, Б.А. Кулаков, М.А. Иванов; М-во образования и науки Рос. Федерации; Юж.-Урал. гос. ун-т (ЮУрГУ). - Челябинск: ЮУрГУ, 2014. - 189 с.: ил.

Выставка "ПАРОВОЗЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 04.02.2019 г. по 10.02.2019 г.

Паровоз — автономный локомотив с паросиловой установкой, использующий в качестве двигателяпаровые машины. Паровозы были первыми передвигающимися по рельсам транспортными средствами, само понятие локомотив появилось гораздо позже и именно благодаря паровозам. Паровоз является одним из уникальных технических средств, созданных человеком, и роль паровоза в истории трудно переоценить. Так, благодаря ему появился железнодорожный транспорт, и именно паровозы выполняли основной объём перевозок в XIX и первой половине XX века, сыграв колоссальную роль в подъёме экономики целого ряда стран. Паровозы постоянно улучшались и развивались, что привело к большому разнообразию их конструкций, в том числе и отличных от классической. Так, существуют паровозы без тендера, без котла и топки, с турбиной в качестве двигателя, с зубчатой трансмиссией. Однако с середины XX века паровоз был вынужден уступить более совершенным локомотивам —тепловозам и электровозам, которые существенно превосходят паровоз по экономичности. Тем не менее, паровозы ещё продолжают работать. Паровозная тяга использовалась в СССР в регулярном железнодорожном сообщении до середины 1970-х годов. По данным историка железной дороги В. А. Ракова на поездной грузовой работе паровозы использовались до 1978 года. В дальнейшем паровозы работали на некоторых второстепенных участках железных дорог. В Латвийской ССР на маршрутах Плявиняс — Гулбене и Рига — Иерики —Пыталово паровозы серии Л водили грузопассажирские поезда как минимум до 1980 года. На участке Питкяранта — Олонец в Карелии паровозы серии Эр водили грузовые поезда до 1986 года. На перегоне Рославль I — Рославль II паровоз серии Л работал с грузовыми составами в 1989 году. Отдельные паровозы в некоторых регионах страны использовались на манёврах в железнодорожных депо и узлах, так же на промышленных предприятиях вплоть до начала 1990-х, некоторые, в частности паровоз ОВ-324, работают до сих пор. Дольше остальных задержались на паровозной тяге некоторые узкоколейные железные дороги страны. После массового исключения паровозов из парка в СССР, в 1960—70-х гг. некоторая часть из них была пущена на слом, другая часть отправилась на многочисленные базы запаса локомотивов, где они были законсервированы, а некоторые, как например часть паровозов серии ФД, были переданы за рубеж. Кроме этого, после списания, паровозы часто использовались в качестве котельных в локомотивных депо или на промышленных предприятиях, а также устанавливались в качестве памятников на железнодорожных станциях, вокзалах и депо. В настоящее время паровозы в основном используются исключительно в ретропоездах, имеющих развлекательно-познавательную функцию.

Представленные издания:

1. Бернштейн А.С. Паровозы серии У / А.С. Берншейн. - М.: Ж.-д. Дело, 2008. - 60 с.: ил.

2. Джонсон Р. Паровоз. Теория, эксплуатация, экономика, сравнение с тепловозами: пер. с англ. / Р. Джонсон; под ред. А.А. Чиркова. - М.: Машгиз, 1947. - 504 с.: ил.

3. Макаров Л. Паровозы серии Э / Л. Макаров. - М.: Железнодорожное Дело, 2009. - 400 с.: ил.

4. Москалев Л. Узкоколейные паровозы. Россия /Л. Москалев, В. Боченков, С. Дорожков. - М.: Железнодорожное Дело, 2012. - 416 с.: ил.

5. Прозоров Н.К. Паровозы. Уустройство, работа, ремонт: учеб. пособие для техн. школ. / Н.К. Прозоров, М.Б. Вигдорчик, Э.К. Гребенкин. - М.: Транспорт, 1986. - 368 с.: ил.

6. Ремонт паровозов и паровых котлов: учеб. для ПТУ / А.П. Третьяков [и др.]. - 2-е изд., перераб. и доп. - М.: Высш. шк., 1974. - 366 с.: ил.

7. Суржин С.Н. Управление паровозом и его обслуживание: учеб. для техн. школ. / С.Н. Суржин, К.Е. Климентьев. - М.: Транспорт, 1978 - 261 с.: ил.

8. Тищенко В.Н. Паровозы железных дорог России (1837-1890): в 2 ч. Ч.1 / В.Н. Тищенко. -М.: Б.и., 2008. - 272 с.: ил.

9. Тищенко В.Н. Паровозы железных дорог России (1837-1890): в 2 ч. Ч.2 / В.Н. Тищенко. -М.: Б.и., 2008. - 272 с.: ил.

10.Хмелевский А.В.Паровоз (Устройство, работа и ремонт): учеб. для техн. школ / А.В. Хмелевский, П.И. Смушков. -2-е изд., перераб. и доп. - М.: Транспорт, 1979 - 414 с.: ил.

Выставка "ПРОИЗВОДСТВО ТРУБ"

Выставка действует в помещении ФБУ "РНТПБ" с 11.02.2019 г. по 17.02.2019 г.

Трубы — это изделия, которые представляют собой вид замкнутого сварного профиля с постоянным сечением. Из них формируют различные коммуникационные системы. Кроме этого, их используют и в других всевозможных целях в строительстве (например, трубный фундамент). На сегодняшний день существует множество разновидностей труб по материалу изготовления. Все они отличаются по способу производства и назначению.
До недавних пор материалом для труб служили различные металлы. Стальные, чугунные, медные и прочие изделия широко использовались в коммуникациях и других областях. Однако с развитием промышленных технологий стали появляться изделия, выполненные из различных полимерных соединений, что привело к большим изменениям в этом сегменте рынка.
Пластиковые трубы имеют ряд неоспоримых преимуществ перед металлическими аналогами: производство и стоимость таких изделий дешевле, отличаются высокими антикоррозийными показателями и имеют долгий срок службы. Они просты в транспортировке и монтаже и имеют эстетичный внешний вид.
Однако использование пластмассовых труб не всегда возможно из-за тех или иных обстоятельств. Как пример, применение изделий из полимерных материалов для хозяйственных газопроводов категорически запрещено. Это связано с тем, что конструкция, транспортирующая газ, должна отличаться высокими прочностными характеристиками. Поэтому газопроводы внутри помещений монтируются только из металлических труб.

Представленные издания:

1. Коликов А.П. Производство холодноформированных труб: учеб. пособие / А. П. Коликов, Ю.Н. Райков. - М.: Цветметобработка, 2013. - 323 с.: ил.

2. Кондратов Л.А. Развитие трубного производства / Л.А. Кондратов. - М.: Металлургиздат, 2015. - 256 с. : ил.

3. Машины и агрегаты для производства стальных труб: учеб. пособие / Ю.Ф. Шевакин и др.; ред. Ю.Ф. Шевакин. - М.: Интермет Инжиниринг, 2007. - 387 с.: ил.

4. Никитин В.А. Проектирование станков холодной и горячей гибки труб / В.А. Никитин. - СПб.: ЦТСС, 2011. - 234 с. : ил.

5. Потапов И.Н. Теория трубного производства: учебник / И.Н. Анисимов, А.П. Коликов, В.М. Друян. - М. : Металлургия", 1991. - 424с. : ил.

6. Производство труб: материалы конференции г. Эссен: пер. с нем. / пер. Ю.П. Шинкаревич, ред. И.Н. Потапов. - М. : Металлургия, 1980. - 285 с. : ил.

7. Рымов В.А.Совершенствование производства сварных труб / В.А. Рымов, П.И. Полухин, И.Н. Потапов. - М.: Металлургия, 1983. - 312 с. : ил.

8. Технология оборудования и трубного производства: учебник / В.Я. Осадчий и др; ред. В.Я. Осадчий. - М. : Интермет Инжиниринг, 2001. - 604 с. : ил.

9. Труды Международной научно-технической конференции "Трубы-2009": сборник докладов / ред. И.Ю. Пышминцев. - Челябинск: РосНИТИ, 2009. - 418с. : ил.

10. Чернявский В.Б. Безопасность труда в трубном производстве / В.Б. Чернявский, В.В. Вышинский, Л.В. Ленская. - Киев: Тэхника, 1990. - 135 с. : ил. - (Техника безопасности).

Выставка "ЭКОЛОГИЯ"

Выставка действует в помещении ФБУ "РНТПБ" с 18.02.2019 г. по 24.02.2019 г.

Современная трактовка понятия экология намного шире, чем в первые десятилетия развития этой науки. В настоящее время чаще всего под экологическими вопросами ошибочно понимаются, прежде всего, вопросы охраны окружающей среды. Во многом такое смещение смысла произошло благодаря всё более ощутимым последствиям влияния человека на окружающую среду, однако необходимо разделять понятия ecological («относящееся к науке экологии») и environmental («относящееся к окружающей среде»). Всеобщее внимание к экологии повлекло за собой расширение первоначально довольно чётко обозначенной Эрнстом Геккелем области знаний (исключительно биологических) на другие естественные, а также гуманитарные науки.
Экология — познание экономики природы, одновременное исследование всех взаимоотношений живого с органическими и неорганическими компонентами окружающей среды… Одним словом, экология — это наука, изучающая все сложные взаимосвязи в природе, рассматриваемые Дарвином как условия борьбы за существование.[4]
Экология — биологическая наука, которая исследует структуру и функционирование систем надорганизменного уровня (популяции, сообщества, экосистемы) в пространстве и времени, в естественных и изменённых человеком условиях.

Представленные издания:

1. Белов С.В. Безопасность жизнедеятельности и защита окружающей среды (техносферная безопасность): учебник / С. В. Белов. - М.: Юрайт, 2010. - 671 с.: ил. - (Основы наук).

2. Горелов А.А. Экология: учеб. пособие / А.А. Горелов. - М.: Юрайт-М, 2001. - 312 с. : ил.

3. Ефремов И.В. Техногенная безопасность: учеб. пособие / И.В. Ефремов, Л.А. Быкова, Е.А. Колобова - Оренбург: Университет, 2013. - 150 с. : ил.

4. Калыгин В.Г. Промышленная экология: учеб. пособие / В. Г. Калыгин. - 4-е изд., переработ. - М. : Академия, 2010. - 432 с. : ил.

5. Карабасов Ю.С. Экология и управление: термины и определения / Ю. С. Карабасов, В.М. Чижикова, М.Б. Плущевский; ред. Ю.С. Карабасов. - М. : МИСИС, 2001. - 256 с. : ил.

6. Новиков Ю.В. Экология, окружающая среда и человек: учеб. пособие / Ю.В. Новиков. - М. : Гранд, 2000. - 317 с. : ил.

7. Радкевич В.А. Экология: учебник / В. А. Радкевич. - 3-е изд., переработ . и доп. - Минск : Вышэйшая школа, 1997. - 159 с. : ил.

8. Рыночные методы управления окружающей средой: учеб. пособие / ред. А.А. Голуб. - М. : ГУ ВШЭ, 2002. - 285 с. : ил.

9. Цгоев Т.Ф. Элементы управления экологической безопасностью на предприятиях и организациях: учеб. пособие / Т.Ф. Цгоев, В.Г. Кокоев - Владикавказ : СКГМИ (ГТУ), 2012. - 342 с. : ил.

10. Челноков А.А. Основы промышленной экологии: учеб. пособие / А. А. Челноков, Л.Ф. Ющенко. - Минск: Вышэйшая школа, 2001. - 343 с. ил.

Выставка "НАСОСЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 25.02.2019 г. по 03.03.2019 г.

Насо́с — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию (в ручных насосах) в энергию потока жидкости, служащую для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов. Объёмные насосы используются для перекачки вязких жидкостей. В этих насосах одно преобразование энергии — энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная). Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).
Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая → кинетическая + потенциальная; 2 этап: кинетическая → потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Представленные издания:

1. Али М.С. Наносы и насосные станции: учебник / М. С. Али, Д.С. Бегляров, В.Ф. Чебаевский. - М.: РГАУ-МСХА, 2015. - 329 с.: ил.

2. Дячек П.И. Насосы, вентиляторы, компрессоры: учеб. пособие / П.И. Дячек. - М.: АСВ, 2013. - 432 с. : ил.

3. Захаров Б.С. Уплотнения нефтяных центробежных и поршневых насосов / Б.С. Захаров, И.Б. Захаров. - М.: ВНИИОЭНГ, 2011. - 202 с. : ил.

4. Калачев В.В. Струйные насосы. Теория, расчет и проектирование / В.В. Калачев. - М. : Филин: Омега-Л, 2017. - 417 с. : ил.

5. Карелин В.Я. Насосы и насосные станции: учебник / В. Я. Карелин, А.В. Минаев. -3-е изд., переработ. и доп. - М. : БАСТЕТ, 2010. - 446 с. : ил.

6. Локалов Г.А. Осевые и центробежные насосы тепловых электрических станций: учеб. пособие / Г.А. Локалов, В.М. Марковский. - Екатеринбург : Уральский ин-т, 2016. - 139 с. : ил.

7. Лопастные насосы: справочник / ред. В.А. Зимницкий, В.А Умов. - Л.: Машиностроение, 1986. - 334 с. : ил.

8. Морозов В.А.Работа центробежных насосов на вязкопластичных жидкостях: монография / В.А. Морозов, А.В. Морозов - Курск : Юго-Зап. гос. ун-т, 2015. - 167 с. : ил.

9. Насосы. Вентиляторы. Кондиционеры: справочник / ред. Е.М. Росляков - СПб.: Политехника, 2006. - 821 с. : ил.

10. Проектирование и исследование ступеней динамических насосов: учеб. пособие / В. Н. Иваницкий. - М.: РГУ нефти и газа, 2015. - 103 с. ил.

11. Рязанцев В.М. Роторно-вращательные насосы с циклоидальными зацеплениями / В.М. Рязанцев. - М.: Машиностроение, 2005. - 345 с. ил.

Выставка "ИННОВАЦИИ"

Выставка действует в помещении ФБУ "РНТПБ" с 04.03.2019 г. по 10.03.2019 г.

Инновация, нововведение — это внедрённое новшество, обеспечивающее качественный рост эффективности процессов или продукции, востребованное рынком. Является конечным результатом интеллектуальной деятельности человека, его фантазии, творческого процесса, открытий, изобретений и рационализации. Примером инновации является выведение на рынок продукции (товаров и услуг) с новыми потребительскими свойствами или качественным повышением эффективности производственных систем.
ИННОВАЦИЯ — введённый в употребление новый или значительно улучшенный продукт (товар, услуга) или процесс, новый метод продаж или новый организационный метод в деловой практике, организации рабочих мест или во внешних связях. Термин «инновация» происходит от латинского «novatio», что означает «обновление» (или «изменение»), и приставки «in», которая переводится с латинского как «в направление», если переводить дословно «Innovatio» — «в направлении изменений». Само понятие innovation впервые появилось в научных исследованиях XIX в. Новую жизнь понятие «инновация» получило в начале XX в. в научных работах австрийского и американского экономиста Й. Шумпетера в результате анализа «инновационных комбинаций», изменений в развитии экономических систем. Шумпетер был одним из первых учёных, кто в 1900-х гг. ввёл в научное употребление данный термин в экономике.
Инновация — это не всякое новшество или нововведение, а только такое, которое серьёзно повышает эффективность действующей системы. Вопреки распространённому мнению, инновации отличаются от изобретений.

Представленные издания:

1. Алтынбаев Р.А. Основы инноватики и управления проектами автоматизации производства: учеб. пособие / Р.Б.Алтынбаев, Н.З. Султанов. - Оренбург: Университет, 2013. - 300 с.: ил.

2. Вагнер О.В. Моделирование инновационного потенциала промышленных предприятий / О.В. Вагнер, С.В. Пестриков; М-во образования Рос. Федерации; Самар. гос. техн. ун-т (СамГТУ). - Самара: Изд-во СамГТУ, 2009. - 117 с.: ил.

3. Грачева М.В. Управление рисками в инновационной деятельности: учеб. пособие / М.В. Грачева, С.Ю. Ляпина. - М.: ЮНИТИ-ДАНА, 2010. - 351 с.: ил.

4. Инновации, качество и сервис в технике и технологиях: 6-я Междунар. науч.-практ. конф.: сб. науч. тр. / [отв. ред. А.А. Горохов]; Юго-Зап. гос. ун-т (ЮЗГУ). - Курск: ЮЗГУ6 Университетская книга, 2016. - 334 с.: ил.

5. Инновации на транспорте и в машиностроении: сб. тр.IV науч.-практ. конф., Санкт-Петербург, 28-29 апр. 2016 г. Т.1. Секция "Транспорт и логистика" / [под ред. В.В. Максарова]; Нац. минерально-сырьевой ун-т "Горный" - СПб.: НМСУ "Горный, 2016. - 151 с.: ил.

6. Инновационные центры высоких технологий в машиностроении / В.И. Аверченков [и др.]; под общ. ред В.И. Аверченкова, А.В. Аверченкова; Брян. гос. техн. ун-т (БГТУ). - Брянск: Изд-во БГТУ, 2009. - 180 с.: ил.

7. Машиностроение как доминанта в инновационных процессах / Э.П. Амосенок [и др.] - Новосибирск: Изд-во ИЭОПП СО РАН, 2008 - 156 с.: ил.

8. Методология управления инновациями в промышленности / А.А. Алетдинова [и др.]; [под ред. А.В. Бабкина]; С.-Петерб. гос. политен. ун-т (СПбГПУ). -СПб.: Изд-во Политехн. ун-та, 2013. - 285 с.: ил.

9. Модели и методы управления жизненным циклом наукоемкой продукции: моногр. / В.Б. Кузнецова [и др.]; Оренбург. гос. ун-т (ОГУ). - Оренбург: Университет, 2016. - 161 с.: ил.

10. Окороков Р.В. Инновационный потенциал предприятия: его оценка и использование / Р.В. Окороков, Я.В. Лемеха, А.А. Тимофеева; под науч. ред. В.Р. Окорокова; С.-Петерб. гос. политехн. ун-т (СПбГПУ). - СПб.: Изд-во Политехн. ун-та, 2008. - 248 с.: ил.

11. Современные инновации в науке и технике: материалы 2-й Междунар. науч.-практ. конф., 18 апреля 2012 г. / отв. ред. А.А. Горохов; Юго-Зап. гос. ун-т (ЮЗГУ). - Курск: ЮЗГУ, 2012. - 250 с.: ил.

12. Современные методы организации научно-исследовательской и инновационной деятельности: учеб. пособие / М.Н. Краснянский [и др.]. - Тамбов: ТГТУ, 2014 - 96 с.: ил.

13. Управление инновациями : учеб. пособие / под общ. ред. В.П. Васильева; Моск гос. ун-т им. Ломоносова (МГУ); Высш шк. управления и инноваций. - М.: Дело и Сервис, 2011. - 400 с.: ил.

Выставка "ВАКУУМНАЯ ТЕХНИКА"

Выставка действует в помещении ФБУ "РНТПБ" с 11.03.2019 г. по 17.03.2019 г.

Вакуумная техника - получение, измерение и применение давлений порядка тысячной нормального атмосферного давления и более низких. Вакуумная техника, методы которой когда-то не выходили за пределы научной лаборатории, в настоящее время применяется во многих отраслях промышленности. Первые области ее промышленного применения – откачка осветительных электроламп и электровакуумных приборов – по-прежнему имеют важное значение, но с появлением транзисторов электронная промышленность нашла новое применение вакуумному оборудованию в производстве высокочистых материалов. Металлургия тоже нашла применение вакуумной технике: вакуумной плавкой металлы очищаются от растворенных газов и летучих примесей; в тех случаях, когда требуется исключить возможность окисления и других загрязнений поверхности, в вакууме проводят отжиг и термообработку. Без вакуумной техники было бы невозможно производство в больших масштабах химически чистых и жаропрочных металлических материалов. Пленки металлов и других веществ, напыляемые в вакууме, находят применение в самых разных отраслях промышленности – от производства детских игрушек до технологии оптических приборов и электронных компонентов. В химической промышленности молекулярная дистилляция при низких температурах, ставшая возможной благодаря понижению давления в перегонном кубе, позволила получать вещества, которые разлагаются, если перегонять их при атмосферном давлении. В медицине, биологии, пищевой промышленности так называемая сублимационная сушка позволяет обезвоживать при низких температурах в вакууме материалы, которые разрушаются при температурах, необходимых для сушки другими способами. Наконец, без вакуумной техники не могла бы существовать атомная промышленность, где она применяется, в частности, для разделения изотопов, обработки материалов и откачки вакуумного оборудования.

Представленные издания:

1. Вакуумная, компрессорная техника и пневмоагрегаты: сб. тр. II Всерос. студенческой научн.-практ. конф., 23 апр. 2009 г. / под ред. К.Е. Демихова; Моск. гос. техн. ун-т им. Баумана (МГТУ им. Н.Э. Баумана). - М. : МГТУ им. Н.Э. Баумана, 2009. - 233 с.: ил.

2. Вакуумная техника: справ. / под общ. ред. К.Е. Демихова, Ю.В. Панфилова. - 3-е изд., перераб. и доп. - М.: Машиностроение, 2009. - 589 с. : ил.

3. Демихов К.Е. Оптимизация высоковакуумных механических насосов / К.Е Демихов, Н.К. Никулин. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. - 255 с.: ил.

4. Кожитов Л.В. Технологическое вакуумное оборудование: учеб.: в 2 ч. Ч. 1. Вакуумные системы технологического оборудования/ Л.В. Кожитов, А.Ю. Зарапин, Н.А. Чиченев. - М.: Руда и металлы, 2001. - 416 с. : ил.

5. Попов А.Н. Вакуумная техника: учеб. пособие / А.Н. Попов. - Минск-М.: Новое знание: ИНФРА-М, 2012. - 163 с. : ил. - (Высшее образование. Бакалавриат).

6. Розанов Л.Н. Вакуумная техника: учеб. / Л.Н. Розанов . - 2-е изд., перераб. и доп. - М. : Высшая школа, 1990. - 320 с. : ил.

7. Розанов Л.Н. Вакуумное технологическое оборудование: учеб. пособие / Л.Н. Розанов; С.-Петерб. гос. политехн. ун-т (СПбГПУ). -СПб.: Изд-во Политехн. ун-та, 2012. - 436 с. : ил. - (Вакуумная техника).

8. Технологическое вакуумное оборудование: учеб. / Л.В. Кожитов [и др.] - 4-е изд., перераб. и доп. - Курск: Юго-Западный гос ун-т, 2014. - 552 с. : ил.

Выставка "ВАГОНОСТРОЕНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 18.03.2019 г. по 24.03.2019 г.

Вагоностроение — отрасль транспортного машиностроения, производящая вагоны для рельсового транспорта. Отрасль обеспечивает потребности в вагонах магистрального и промышленного железнодорожного транспорта, а также городской рельсовый транспорт: метрополитен и трамвай.. Вагоностроение как отрасль машиностроения зародилось в развитых в промышленном отношении странах во время начала железнодорожной эры. Впервые необходимость строительства вагонов появилась в Великобритании в связи со строительством дороги Ливерпуль — Манчестер. Затем к списку стран, строивших железные дороги, буквально за несколько лет присоединились США, Франция, Германия, Бельгия, Австро-Венгрия. Уже к концу 1830-х годов в Великобритании, США, Германии, Бельгии насчитывалось по нескольку заводов, строивших для железных дорог подвижной состав. Очевидно, что первоначально строились паровозы и вагоны на одних и тех же заводах, затем появилась специализация заводов, выделились отдельные вагоностроительные заводы. В 1840-е годы и в Российской Империи заводы стали строить вагоны.

Представленные издания:

1. Анисимов П.С. Испытания вагонов: монография / П. С. Анисимов. - М.: Маршрут, 2004. - 196 с.: ил.

2. Апробация новых методик проектирования грузовых вагонов: сборник науч. трудов: Вып. 11 / ред. А.А. Битюцкий. - СПб.: Ом-Пресс, 2012. - 118 с. : ил.

3. Батюшин Т.К. Технология вагоностроения. Ремонт и надежность вагонов: учебник / Т.К. Батюшин, В.Б. Быховский, В.С. Лукашук; ред. В.С. Лукашук. - М.: Машиностроение, 1990. - 359 с. : ил.

4. Бенешевич В.В. Технология производства и ремонта вагонов: учеб. пособие / В.В. Бенешевич, О.Ю. Кривич. - М. : МИИТ, 2011. - 97 с. : ил.

5. Конструирование и расчет вагонов: учебник / ред. П.С. Анисимов. -2-е изд., переработ. и доп. - М. : ФГОУ "Учебно-метод. центр по образов. на ж.-д. трансп-те", 2011. - 688 с. : ил.

6. Лозбинев В.П. Оптимальное проектирование кузовов вагонов / В.П. Лозбинев, Ф.Ю. Лозбинев; ред. В.П. Лозбинев. - Брянск : БГТУ, 2012. - 178 с. : ил.

7. Морчиладзе И.Г. Проектирование, конструирование, расчет и испытания вагонов: учеб. пособие / И.Г. Морчиладзе, А.М. Соколов, М.М. Соколов. - М.: ИБС-Холдинг, 2009. - 519 с. : ил.

8. Проблемы и перспективы развития вагоностроения: материалы III Всероссийской научно-практич. конференции 21-22 дек. 2006 г., Брянск / РАТ. - Брянск: БГТУ, 2006. - 105 с. : ил.

9. Совершенствование методов проектирования и результаты внедрения новых конструкций грузовых вагонов: сборник науч. трудов: Вып. 3 / ред. А.А. Битюцкий; Инженерный центр вагоностроения. - СПб.: ОМ-Пресс, 2007. - 107 с. : ил.

10. Техническая дианостика вагонов: В 2 ч.: Ч. 1. Теоретические основы диагностики и неразрушающего контроля деталей вагонов: учебник / ред. В.Ф. Криворудченко. - М.: ФГБОУ "Учебно-метод. центр по образов. на ж.-д. трансп-те, 20153- 402 с. ил.

11. Чурков Н.А. История вагоностроения: учеб. пособие / Н.А. Чурков, М.М. Соколов, И.Г. Морчеладзе. - СПб.: ПГУПС, 2014. - 190 с. ил.

Выставка "РЕЖУЩИЙ ИНСТРУМЕНТ"

Выставка действует в помещении ФБУ "РНТПБ" с 25.03.2019 г. по 29.03.2019 г.

Сущность технологии изготовления деталей машин состоит в последовательном использовании различных технологических способов воздействия на обрабатываемую заготовку с целью придать ей заданную форму и размеры указанной точности. Одним из таких способов является механическая обработка заготовок резанием. Она осуществляется металлорежущим инструментом и ведётся на металлорежущих станках. Все способы и виды обработки металлов основаны на срезании припуска и преобразования его в стружку, составляют разновидности, определяемые термином «резание металлов». Наивыгоднейшим режимом резания называется такой, при котором обеспечиваются наибольшая производительность и наименьшая себестоимость обработки при этом не нарушая качества изделия. При назначении элементов режима резания необходимо наиболее полно использовать режущие свойства инструмента, а также кинематические и динамические данные станка. При этом должно быть обеспечено заданное качество обработанной детали. Назначение режима резания – это выбор скорости, подачи и глубины резания, обеспечивающий требуемый период стойкости инструмента.

Представленные издания:

1. Рыжкин А.А., Шучев К.Г., Схиртладзе А.Г., Боков А.И., Алиев М.М. Режущий инструмент.

2. Солоненко В.Г., Рыжкин А.А. Резание металлов и режущие инструменты. Бакалавриат. Учебное пособие.

3. Солоненко В.Г., Рыжкин А.А. Резание металлов и режущие инструменты. Машиностроение и металлообработка для высших учебных заведений.

4. Фельдштейн Е.Э., Корниевич М.А., Режущий инструмент. Эксплуатация. Бакалавриат. Учебное пособие.

5. Малышев В.И. Технология изготовления режущего инструмента.

Выставка "ТЯЖЕЛОЕ МАШИНОСТРОЕНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 01.04.2019 г. по 08.04.2019 г.

Тяжелое машиностроение относится к материалоемким отраслям с большим потреблением металла и относительно малой трудоемкостью. К тяжелому машиностроению относят производство металлургического, горно-шахтного, крупноэнергетического, подъемно-транспортного оборудования, тяжелых станков, крупных морских и речных судов, локомотивов и вагонов. Размещение тяжелого машиностроения в первую очередь зависит от сырьевой базы и районов потребления. Например, производство металлургического и горно-шахтного оборудования размещается, как правило, вблизи металлургических баз и в районах потребления готовой продукции. Одной из важнейших отраслей тяжелого машиностроения является производство оборудования для металлургической промышленности. Большая металлоемкость продукции этих производств, сложность транспортировки обусловили размещение этих предприятий вблизи центров развития металлургии и потребления этой продукции: Екатеринбург, Орск, Красноярск, Иркутск, Комсомольск-на-Амуре. Крупные центры производства горно-шахтного оборудования созданы в Западной Сибири – Новокузнецк, Прокопьевск, Кемерово. В Красноярске построен один из крупнейших заводов по производству тяжелых экскаваторов, которые используются при освоении буроугольных месторождений Канско-Ачинского бассейна.

Представленные издания:

1. Таратынов О.В., Базров Б.М., Клепиков В.В., Аверьянов О.И., Новиков О.А., Герасин А.Н. Проектирование технологий машиностроения.

2. Салтыков В.А., Аносов Ю.М., Федюкин В.К. Технологии машиностроения.

3. Тюленев Л.В. Организация и планирование машиностроительного производства.

4. Крюков А.В., Колмогоров Д.Е. Автоматизированное проектирование сварных металлоконструкций в машиностроении.

5. Ловыгин А.А., Теверовский Л.В. Современный станок с ЧПУ и CAD/CAM система.

Выставка "ЛИТЕЙНОЕ ПРОИЗВОДСТВО"

Выставка действует в помещении ФБУ "РНТПБ" с 10.04.2019 г. по 15.04.2019 г.

Выставка предназначена для инженерно-технических работников и менеджеров машиностроительных, металлообрабатывающих и металлургических предприятий. Представленные на выставке книги освещают технологические процессы и оборудование для подготовки исходных формовочных материалов, плавки и заливки металла, выбивки и очистки отливок.

Представленные издания:

1. Матвеенко И.В. Оборудование литейных цехов

2. Кац А.М. Основы автоматизации и управления литейным производством.

3. Бречко А.А., Атливаник Л.Г., Поляков Ю.Г., Щаников А.И., Бречко Н.Г. Литейные системы и их моделирование.

4. Шуляк В.С. Литье по газифицируемым моделям.

5. Левшин Г.Е., Матюшков И.Л. Литье в магнитные формы.

Выставка "ПРОИЗВОДСТВО ПРОКАТА"

Выставка действует в помещении ФБУ "РНТПБ" с 15.04.2019 г. по 19.04.2019 г.

Прокат получается в результате прокатного производства и в зависимости от его особенностей может быть горячим и холодным. Горячий прокат получают путем нагревания металла для повышения его пластичности; холодный прокат получается в том случае, когда пластичность металла достаточна и без нагрева (например, у мягких марок стали). Прокатка ведется на специальных устройствах – прокатных станах. Длина прокатных станов зависит от объемов производства проката, от свойств полученной прокатанной стали и может быть очень большой: например, протяженность прокатного стана-2000 на комбинате «Северсталь» в Череповце несколько сотен метров. Часто на прокатном стане наряду с основной функцией проката совмещаются и дополнительные: резка металла на части, маркировка или клеймение, сматывание в рулоны, упаковка и др. Полученный прокат имеет определенную форму поперечного сечения, или, как говорят металлурги, профиль. По основным профилям прокат делится на обжимной (блюмы и слябы, которые сами по себе являются заготовками для дальнейшей металлообработки), сортовой (рельсы, балки, швеллеры, проволока), листовой (металлический лист разной толщины, ширины и длины, холоднокатаные лента и фольга), трубный и специальный (марки проката, получаемые при колесопрокатном, кольцепрокатном, шаропрокатном производстве, профили переменного сечения).

Представленные издания:

1. Жучков С.М., Лохматов А.П., Андрианов Н.В., Маточкин В.А. Процесс прокатки-разделения с использованием неприводных делительных устройств.

2. Смирнов В.К., Шилов В.А., Инатович Ю.В. Калибровка прокатных валков.

3. Груднев А.П., Машкин Л.Ф., Ханин М.И. Технология прокатного производства.

4. Делюсто Л.Г. Абразивно-порошковая очистка проката от окалины.

5. Никитин Г.С. Теория непрерывной продольной прокатки.

6. Зотов В.Ф. Производство проката.

Выставка "НЕФТЕПЕРЕРАБОТКА"

Выставка действует в помещении ФБУ "РНТПБ" с 22.04.2019 г. по 30.04.2019 г.

Нефть – это одно из главных богатств России. Нефтяная промышленность РФ тесно связана со всеми отраслями народного хозяйства, имеет огромное значение для российской экономики. Спрос на нефть всегда опережает предложение, поэтому в успешном развитии нашей нефтедобывающей промышленности заинтересованы практически все развитые государства мира. Сырая нефть не используется в первоначальном виде, она поступает на нефтеперерабатывающие заводы, производящие конечные нефтепродукты, используемые в разных отраслях промышленности и бытовой жизни. Заводы располагаются во всех районах страны, т. к. дешевле транспортировать сырую нефть, чем продукты ее переработки. Нефтяная промышленность – одно из основных звеньев современной экономики. Без использования нефтепродуктов современная жизнь невозможна. Россия заметно отстает в развитии технологий нефтепереработки и нефтехимии, в первую очередь из-за слабого внедрения инноваций в нефтяной отрасли, однако в стране есть необходимые научные разработки и для более эффективной переработки нефти, и для внедрения альтернативных источников энергии. Курс России на модернизацию промышленности требует от нефтепереработчиков и нефтехимиков России активных действий для удовлетворения потребностей внутреннего рынка и экспорта высококачественных, обладающих добавочной стоимостью нефтепродуктов, вместо экспорта сырой нефти. Основное направление развития современной экономики России — это высокоэффективная переработка собственных ресурсов.
К числу наиболее важных задач модернизации нефтепереработки и нефтехимии России относятся: переход от торговли сырой нефтью к торговле нефтепродуктами и продуктами нефтехимии; ввод в действие техрегламента на новые стандарты нефтепродуктов; выравнивание пошлин на светлые и темные нефтепродукты; коренная модернизация действующих предприятий с увеличением глубины и комплексности переработки сырья; строительство новых экспортно-ориентированных нефтеперерабатывающих и нефтехимических комплексов; строительство системы для транспортировки углеводородного сырья и продуктов переработки; развитие отечественных технологий переработки газового и нефтяного сырья. В настоящее время в России разработаны конкурентоспособные технологии и катализаторы, в том числе наноструктурные каталитические системы для важнейших крупнотоннажных процессов переработки нефти, таких как каталитическая изомеризация, каталитический крекинг, гидро-генизационные технологии. Однако даже в реализованных отечественных промышленных технологиях и процессах часто используют зарубежные каталитические системы. Это связано, с одной стороны, с проблемами внедрения отечественных разработанных катализаторов для нефтепереработки и нефтехимии, с другой — с невозможностью их производства в промышленном масштабе в связи с незначительным количеством катализаторных производств и устаревшим оборудованием. Инновации в нефтепереработке и нефтехимии — это залог существования и выживания отрасли в ближайшие 10—15 лет. Для успешной реализации инновационной политики и реализации программы стратегического развития отрасли до 2020 г. необходимо в кратчайшие сроки осуществить крупные проекты модернизации предприятий с внедрением инновационных технологий переработки углеводородных ресурсов. Одним из направлений реализации и внедрения инновационных технологий может являться вариант закупки базовых технологических пакетов и разработки базовых проектов российскими научно-исследовательскими и проектными организациями. Важной задачей также является повышение доли отечественного оборудования в проектах модернизации российской нефтепереработки. В настоящее время при строительстве новых и модернизации действующих производств большая часть оборудования поставляется из-за рубежа. Вместе с тем продукция российских машиностроительных заводов на 85-90% соответствует мировому уровню (за исключением уникальных компрессоров и систем автоматизации). Использование отечественных инжиниринговых компаний в качестве генеральных подрядчиков (ЕР-контракторов) позволит увеличить вклад российских производителей оборудования в модернизацию отрасли и снизить затраты на инвестиции.

Представленные издания:

1. Кузеев И.Р., Баширов М.Г. Электромагнитная диагностика оборудования

2. Костюков В.Н. Мониторинг безопасности производства.

3. Афанасьев А.М. Нефтехимический комплекс: методы оценки и обеспечения устойчивости функционирования.

4. Азарьев И.А. Нефтеперерабатывающее и нефтехимическое оборудование.

5. Ким В.С. Конструирование и расчет механизмов и деталей машин химических и нефтеперерабатывающих производств.

6.Жидков А.Б. Трубчатые нагревательные печи нефтепереработки и нефтехимии.

Выставка "МЕТАЛЛОВЕДЕНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 06.05.2019 г. по 08.05.2019 г.

Металловедение — наука, изучающая связь между составом, строением и свойствами металлов и сплавов, а также их изменения при различных внешних воздействиях (тепловом, механическом, химическом и т. д.). Основная практическая задача металловедения — изыскание оптимального состава и обработки сплавов для получения заданных свойств. Металловедение условно разделяют на теоретическое, рассматривающее общие закономерности строения и процессов, происходящих в металлах и сплавах при различных воздействиях, и прикладное (техническое) изучающее основы технологических процессов обработки (термическая обработка, литье, обработка давлением) и конкретные классы металлических материалов.
Материалы, применяемые в современных конструкциях, помимо высоких прочностных характеристик должны обладать комплексом таких свойств, как повышенная коррозионная стойкость, жаропрочность, теплопроводность и электропроводимость, тугоплавкость, а также способностью сохранять эти свойства в условиях длительной работы под нагрузками.
Технически чистые металлы (99,9 % основного металла), как правило, характеризуются низкими прочностными свойствами, поэтому в машиностроении применяют главным образом их сплавы. Сплавы на основе железа в зависимости от содержания в них углерода называют сталями или чугунами; на основе алюминия, магния, титана и бериллия, имеющих малую плотность, — легкими цветными сплавами; на основе цинка, кадмия, олова, свинца, висмута и других металлов — легкоплавкими цветными сплавами; на основе меди, свинца, олова и др. — тяжелыми цветными сплавами; на основе молибдена, ниобия, циркония, вольфрама, ванадия и др. — тугоплавкими цветными сплавами.
Как наука металловедение насчитывает около 200 лет, несмотря на то, что человек начал использовать металлы и сплавы еще за несколько тысячелетий до нашей эры.
В средние века покупатели оценивали качество стали, по таким характеристикам как излом, узор на поверхности (дамасская сталь) и режущим свойствам.
С развитием промышленности сведения о различных характеристиках материалов были необходимы потребителям (сведения о товаре), а также производителям для возможности улучшения эксплуатационных свойств материалов. Производителей металлических материалов стало интересовать влияние состава, структуры, различных воздействий (механических, тепловых, электрических и т.д.) на свойства, дабы эти самые свойства улучшить, хотя металлурги, конечно, и раньше интуитивно осознавали, что свойства металлических сплавов зависят не только от химического состава, но и в значительной степени от микро- и макроструктуры. Тем не менее, осознание, что дальнейший прогресс в области создания новых материалов и улучшения свойств уже созданных невозможен без развития науки, пришло.
С развитием оптики (~XVII в) начали исследовать и описывать структуру металлов с помощью увеличительных стекол и оптических микроскопов. Одним из первых подобных исследований осуществил Р.Гук, результаты которого вылились в монографию «Микрография». Примерно в то же время (в 1665 г.) была издана работа Агриколы «О металлах», которая являлась первым обобщением практического опыта по получению и обработке металлов. Первое издание на русском языке было выпущено издательством Академии наук СССР в 1962 г. В сети можно найти издание 1986 года. С этим периодом и можно связать зарождение науки о металлах и ее использования в металлургии.
Только в XVIII веке появились отдельные научные результаты, позволяющие говорить о начале осмысленного изучения всего того, что накопило человечество за все время использования металлов.
Скачок в развитии химии и металлургии во второй половине XIX в. связан с именами двух корифеев мировой научной и технической мысли – Д.И. Менделеева и Д.К. Чернова.
Сегодня наука о металлах все ближе подходит к тому состоянию, когда можно будет с использованием компьютеров прогнозировать и рассчитывать с достаточной точностью свойства новых уникальных сталей и сплавов.

Представленные издания:

1. Лахтин Ю.М. Основы металловедения.

2. Шмитт-Томас К.Г. Металловедение для машиностроения.

3. Солнцев Ю.П., Веселов В.А., Демянцевич В.П. и др. Металловедение и технология металлов.

4. Чернявский К.С. Стереология в металловедении.

5. Горицкий В.М. Диагностика металлов.

6. Отв. редактор: Кабачник М.И. Металло-органические соединения и радикалы.

Выставка "ШЛИФОВАНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 13.05.2019 г. по 17.05.2019 г.

В представленных на выставке книгах излагаются основные сведения о состоянии и развитии технологии высокоэффективного шлифования различных материалов. Выставка предназначена для научных и инженерно-технических работников машиностроителтных специальностей.

Представленные издания:

1. Зубарев Ю.М., Приемышев А.В. Теория и практика повышения эффективности шлифования материалов.

2. Макаров В.Ф. Современные методы высокоэффективной абразивной обработки труднообрабатываемых материалов.

3. Макаров В.Ф. Выбор абразивных инструментов и режимов резания для высокоэффективного шлифования заготовок.

4. Калинин Е.П. Теория и практика управления производительностью шлифования без прижогов с учетом затупления инструмента.

Выставка "КОТЛОСТРОЕНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 20.05.2019 г. по 24.05.2019 г.

Котельная техника в мире постоянно совершенствуется и обновляется. Ее развитие идет по таким основным направлениям:
• применение новых, высокоэффективных, экологически чистых технологий сжигания топлива;
• увеличение единичной мощности агрегатов и повышение параметров пара;
• применение более качественных и новых материалов при изготовлении котлов, совершенствование и модульная унификация элементов котлов и вспомогательного оборудования;
• применение рациональных конструкций топочных устройств и процессов сжигания топлива, систем пылеприготовления и тягодутьевых установок;
• использование более совершенных систем золоуловителей и установок для очистки продуктов сгорания топлива;
• повышение тепловой экономичности котельных установок за счет использования скрытой теплоты парообразования при снижении температуры уходящих газов;
• дальнейшее развитие применения систем с ЭВМ для комплексной автоматизации работы котлов.
В настоящее время в котлостроительном производстве используются современные методы проектирования и технологии изготовления котельных агрегатов разной мощности и назначения. Котлы лучших мировых производителей для промышленной и коммунальной энергетики имеют весьма совершенные системы регулирования, в том числе с программным управлением. Среди производителей котлов для ТЭС есть как транснациональные корпорации, производство которых рассредоточено по всему миру, так и чисто национальные производители. Следует отметить, что в последнее десятилетие котлостроительная отрасль характеризуется приходом мощных азиатских фирм. Характерной чертой современной теплоэнергетики является строительство крупных пылеугольных ТЭС с высоким к.п.д (до 45% и более), с котлоагрегатами большой единичной мощности (800–1000 МВт) на сверхкритические (25,5 МПа, 560°С), а также суперсверхкритические (30 МПа и более, 700°С) параметры пара и с экологическими показателями, соответствующими лучшим мировым стандартам, которые обеспечиваются как за счет технологических приемов во внутритопочном пространстве котла, так и внедрением систем очистки уходящих газов от загрязнений оксидами серы, азота и частицами пыли. Важной особенностью современного котлостроения следует назвать создание и широкое внедрение котлов с кипящим слоем при атмосферном и повышенном давлении и с циркулирующим кипящим слоем (ЦКС), основным достоинством которых является широкий диапазон используемых видов твердого топлива различной зольности (до 65%), возможности регулирования нагрузки в диапазоне 40–100% от номинальной без изменения эффективности процесса и высокая степень очистки продуктов сгорания от оксидов азота и серы за счет сравнительно низких температур горения в слое и добавления в него известняка. Лидирующую позицию в производстве таких котлов занимает транснациональная компания «Foster Wheeler». В России машиностроительный завод ОАО «ЗИО-Подольск» в настоящее время производит факельные котельные агрегаты к энергоблокам мощностью от 50 до 800 МВт на разных видах топлива для тепловых электростанций; котлы-утилизаторы за газовыми турбинами для парогазовых установок мощностью от 6 до 500 МВт; отопительные водогрейные котлы «Стазан» мощностью от 6 до 500 МВт; парогенераторы; сепараторы-пароперегреватели; теплообменное оборудование; технологические конденсаторы; различные элементы для модернизации котельных агрегатов и другое оборудование.

Представленные издания:

1. Карякин С.К. Технологические процессы котлостроения.

2. Липов Ю.М., Третьяков Ю.М. Котельные установки и парогенераторы.

3. Бадагуев Б.Т. Паровые и водогрейные котлы.

4. Горфинкель М.С. Котлостроение. Лекции, читанные во Всесоюзном котлотурбинном институте в Ленинграде. Ч. 2 / М. С. Горфинкель. - Л. - М. : Госэнергоиздат, 1933. - 196 с. : ил.

5. Паршин А.А. Технология котлостроения: учеб. / А. А. Паршин, С. М. Тер-Миносьян, О. М. Бредихин. - М. : Машиностроение, 1993. - 272 с. : ил. - (Для техникумов).

6. Карякин С.К. Технологические процессы котлостроения: учеб. пособие / С. К. Карякин ; Нац. исслед. Том. политехн. ун-т (ТПУ). - 2-е изд., испр. - Томск : Изд-во Том. политехн. ун-та, 2011. - 175 с. : ил.

7. Леваков В.С. Основы котельного производства: учеб. пособие / В. С. Леваков. - М. : Высш. шк., 1986. - 384 с. : ил.

8. Палей Е.Л. Проектирование котельных: справ.-практ. пособие / Е. Л. Палей. - СПб. : Изд-во СПбГПУ, 2015. - 216 с. : ил.

9. Широков С.И. Котельное производство / С. И. Широков. - 3-е изд. - М. - Свердловск : Машгиз, 1960. - 280 с. : ил.

10. Палей Е.Л. Нормативные требования и практические рекомендации при проектировании котельных / Е. Л. Палей. - СПб. : Питер, 2014. - 144 с. : ил.

11. Липов Ю.М. Компановка и тепловой расчет парового котла: учеб. пособие / Ю. М. Липов, Ю. Ф. Самойлов, Т. В. Виленский. - репр. воспр. изд. - М. : Альянс, 2012. - 208 с. : ил.

12. Сидельковский Л.Н. Котельные установки промышленных предприятий: учеб. / Л. Н. Сидельковский, В. Н. Юренев. - 4-е изд., перераб., репр. - М. : ООО "Бастет", 2009. - 528 с. : ил.

13. Бадагуев Б.Т. Безопасная эксплуатация паровых и водогрейных котлов / Б. Т. Бадагуев. - М. : Альфа-Пресс, 2012. - 296 с.

14. Бадагуев Б.Т. Паровые и водогрейные котлы. Производственно-техническая документация ответственного за исправное состояние и безопасную эксплуатацию / Б. Т. Бадагуев. - М. : Альфа-Пресс, 2013. - 488 с.

15. Аварии и несчастные случаи на объектах котлонадзора: учеб. пособие / В. Ф. Мартынюк [и др.]; Рос. гос. ун-т нефти и газа им. И.М. Губкина (РГУНГ). - М. : ООО "Анализ опасностей", 2008. - 88 с. : ил.

Выставка "ДВИГАТЕЛЕСТРОЕНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 27.05.2019 г. по 31.05.2019 г.

Двигателестроение – это отрасль промышленности и важное направление машиностроения, главной специализацией которого является производство, обслуживание и сбыт двигателей и их комплектующих для техники различного типа. Двигателестроение включает в себя основные подотрасли: 1. Авиационное двигателестроение – отрасль промышленности, базирующая на высочайших технологиях, передовых достижениях науки и производящая высокотехнологическую продукцию, которая применяется в энергетике, газодобывающей и транспортной промышленности. Главный продукт данного производства – авиационные двигатели, которые отличаются разной конфигурацией, модификацией и составляющими элементами. Они предназначаются для различных летательных аппаратов разного применения и классифицируются на турбовинтовые, турбореактивные, турбовентиляторные, турбовальные, вспомогательные. 2. Танковое двигателестроение – отрасль двигателестроения, которая осуществляет разработку, проектирование, производство и ремонтно-техническое обслуживание двигателей и его составляющих частей, предназначенных для военной техники: танков, самоходных орудий, бронемашин, специализированных машин особого предназначения. 3. Ракетное двигателестроение – промышленная деятельность, специализирующая на теоретической и экспериментальной разработке, конструировании, производстве и ремонте реактивных двигателей, которые способны вывести полезную нагрузку на орбиту искусственного спутника Земли и применяются в условиях безвоздушного космического пространства. На данный момент существует множество компаний и заводов, занятых в двигателестроении.

Представленные издания:

1. Яманин А.И., Голубев Ю.В., Жаров А.В., Шилов С.М., Павлов А.А. Компьютерно-информационные технологии в двигателестроении.

2. Под ред. Дащенко А.И. Технология двигателестроения.

3. Тринклер Г.В. Двигателестроение за полустолетие.

4. Куксис В.С., Романов В.А. Новые пути повышения эффективности двигателей внутреннего сгорания.

Выставка "РОБОТОТЕХНИКА"

Выставка действует в помещении ФБУ "РНТПБ" с 03.06.2019 г. по 05.06.2019 г.

Структура, конструкция и функциональные характеристики роботов не всегда находят должное отражение в терминологии, используемой в справочно-информационных изданиях, словарях, учебных пособиях, а также в многочисленных научных публикациях, отличающихся большой терминологической разнородностью и неупорядоченностью.
Робототехника – область науки и техники, связанная с созданием, исследованием и применением роботов, охватывает вопросы проектирования, программного обеспечения, очувствления роботов, управления ими, а также роботизации промышленности и непромышленной сферы.
Робот – многофункциональная перепрограммируемая машина, для полностью или частично автоматического выполнения двигательных функций аналогично живым организмам, а также некоторых интеллектуальных функций человека.
Перепрограммируемостъ – возможность замены, коррекции или генерации управляющей программы автоматически или при помощи человека.

Представленные издания:

1. Козырев Ю.Г. Применение промышленных роботов: учеб. пособие для вузов / Ю. Г. Козырев. - М. : КноРус, 2011. - 488 с. : ил.

2. Козырев Ю.Г. Захватные устройства и инструменты промышленных роботов: учеб. пособие для вузов / Ю. Г. Козырев. - М. : КноРус, 2011. - 312 с. : ил.

3. Макаров И.М. Робототехника: история и перспективы / И. М. Макаров, Ю. И. Топчеев. - М. : Наука : МАИ, 2003. - 349 с. : ил. - (Информатика: неограниченные возможности и возможные ограничения).

4. Пети Ж.П. О чем размышляют роботы?: пер. с фр. / Ж. П. Пети. - М. : Мир, 1987. - 72 с. : ил.

5. Игнатова Е.И. Робототехнические системы. Компьютерное моделирование / Е. И. Игнатова, Н. В. Ростов ; С.-Петерб. гос. политехн. ун-т (СПбГПУ). - СПб. : СПбГПУ, 2009. - 273 с. : ил.

6. Юревич Е.И. Основы робототехники: учеб. для вузов / Е. И. Юревич. - 3-е изд., перераб. и доп. - СПб. : СХВ-Петербург, 2010. - 368 с. : ил. + табл.

7. Патон Б.Е. Промышленные роботы для сварки / Б. Е. Патон, Г. А. Спыну, В. Г. Тимошенко. - Киев : Наукова думка, 1977. - 228 с. : ил.

8. Белянин П.Н. Промышленные роботы и их применение: Робототехника для машиностроения / П. Н. Белянин. - 2-е изд., перераб. и доп. - М. : Машиностроение, 1983. - 311 с. : ил.

9. Шошиашвили М.Э. Проектирование робототехнических и мехатронных систем: учеб. пособие. Ч. 1. Проектирование роботов и робототехнических систем / М. Э. Шошиашвили, Т. Н. Круглова ; М-во образования и науки Рос. Федерации; Новочеркасский политехн. ин-т (НПИ). - Новочеркасск : ЮРГПУ (НПИ), 2012. - 190 с. : ил.

10. Бусленко В.Н. Наш коллега - робот / В. Н. Бусленко. - М. : Мол. гвардия, 1984. - 222 с. : ил. - (Эврика).

11. Рубанов В.Г. Мобильные микропроцессорные системы автоматизации транспортно-складских операций. Мобильные робототехнические системы / В. Г. Рубанов, А. С. Кижук. - Белгород : БГТУ, 2011. - 288 с. : ил.

12. Фирас А.Р. Интеллектуальные системы планирования и управления перемещением робота-манипулятора в неизвестной среде / А. Р. Фирас, А. Г. Булгаков ; М-во образования и науки Рос. Федерации ; Новочеркасский политехн. ин-т (НПИ). - Новочеркасск : НОК, 2010. - 160 с. : ил. - (Наука. Образование. Культура).

Выставка "ГАЗОВЫЕ ТУРБИНЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 07.06.2019 г. по 14.06.2019 г.

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки?
России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков – "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.


Представленные издания:

1. Гецов Л.Б. Материалы и прочность газовых турбин.

2. Цанев С.В., Буров В.Д., Земцов А.С., Осыка А.С. Газотурбинные энергетические установки.

3. Шигапов А.Б. Стационарные газотурбинные установки тепловых электрических станций.

4. Шабаров А.Б., Шалай В.В., Земенков Ю.Д., Акулов К.А., Чекардовский С.М. Устройство и эксплуатация газотурбинных установок.

5. Тунаков А.П., Кривошеев И.А., Ахмедзянов Д.А. САПР газотурбинных двигателей.

6. Лапшин К.Л. Оптимизация проточных частей паровых и газовых турбин.

Выставка "ЛАЗЕРЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 17.06.2019 г. по 21.06.2019 г.

Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, “всякий мальчишка теперь знает слово лазер”. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах – квантовой электроники – академик Н.Г. Басов отвечает на этот вопрос так: “Лазер – это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля – лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую еже на сегодняшний день плотность энергии ядерного взрыва… С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли – принципиально новым средством ее передачи и обработки”. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер – это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами.

Представленные издания:

1. Бертолотти М. История лазера.

2. Под ред Зуева И.В., перевод Смирнова А.Л. Промышленное применение лазеров.

3. Алейников В.С., Масычев В.И. Лазеры на окиси углерода.

4. Балошин Ю.А., Крылов К.И., Шарлай С.Ф. Применение ЭВМ при разработке лазеров.

5. Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Технологические процессы лазерной обработки.

Выставка "ПЛАСТМАССЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 17.06.2019 г. по 21.06.2019 г.

Пластмассы представляют собой материалы на основе природных или синтетических полимеров, способные приобретать заданную форму при нагревании и под давлением и устойчиво сохранять ее после охлаждения. Помимо полимера в состав пластмасс часто входят различные добавки: наполнители, пластификаторы, стабилизаторы, красители и другие компоненты. В настоящее время пластмассы получили широчайшей распространение. Причиной такого распространения являются их низкая цена и легкость переработки, а также свойства, которые в некоторых случаях уникальны. Пластмассы применяют в электротехнике, авиастроении, ракетной и космической технике, машиностроении, производстве мебели, легкой и пищевой промышленности, в медицине и строительстве, – в общем, пластмассы используются практически во всех отраслях народного хозяйства. Пожалуй, единственная область, где использование пластмасс пока ограничено - это техника высоких температур. Но в скором времени они проникнут и сюда: уже получены пластмассы, выдерживающие температуры 2000-2500°C. Развитие химических технологий, помогающих создавать вещества с заданными свойствами, позволяет сказать, что пластмассы один из важнейших материалов будущего. Многие из них имеют столь ценные качества, что у них нет аналогов в природе. Производство пластмасс развивается значительно быстрее, чем производство металлов.

Представленные издания:

1. Крыжановский В.К. Инженерный выбор и идентификация пластмасс.

2. Шуклин С.Г. Регулирование горения полимерных материалов и процессы карбонизации при формировании покрытий, содержащих наноструктуры.

3. Егорова Е.И., Коптенармусов В.Б. Основы технологии полистирольных пластиков.

4. Вентиляция и отопление цехов переработки пластмасс - Л. : Химия, 1983. - 134 с. : ил.

5. Гольдаде В.А. Электретные пластмассы: Физика и материаловедение / В.А. Гольдаде, Л.С. Пинчук; под ред. В.А. Белого. - Минск : Наука и техника, 1987. - 232 с. : ил. - (Наука и технический прогресс).

6. Гольдман А.Я. Объемное деформирование пластмасс / А. Я. Гольдман. - Л. : Машиностроение, 1984. - 322 с. : ил.

7. Калинчев Э.Л. Выбор пластмасс для изготовления и эксплуатации изделий: справ. пособие / Э.Л. Калинчев, М.Б. Саковцева. - Л. : Химия, 1987. - 303 с. : ил. - (Справочник).

8. Квасов А.С. Пластмассы. Технология и художественное конструирование изделий из них: учеб. пособие / А.С. Квасов. - М. : Высш. школа, 1976. - 152 с. : ил.

9. Микаэли В. Экструзионные головки для пластмасс и резины: Конструкции и технические расчеты: пер. с англ. яз. / В. Микаэли. - 3-е перераб. изд. - СПб. : Профессия, 2007. - 470 с. : ил.

10. Обухов А.С. Проектирование химического оборудования из стеклопластков и пластмасс: произв. изд. / А.С. Обухов. - М. : Машиностроение, 1995. - 240 с. : ил.

11. Справочник по технологии изделий из пластмасс / под ред. Г.В. Сагалаева и др. - М. : Химия, 2000. - 424 с. : ил.

12. Шрадер В. Обработка и сварка полуфабрикатов из пластмасс: в вопросах и ответах: пер. с нем. / В. Шрадер; пер. А.А. Левин, П.А. Кунин. - М. : Машиностроение, 1980. - 469 с. : ил.

Выставка "СТАНКИ И ИНСТРУМЕНТ"

Выставка действует в помещении ФБУ "РНТПБ" с 02.07.2019 г. по 08.07.2019 г.

Современные требования к качеству машин различного технологического назначения определяют повышенное внимание специалистов к обработке сложных и точных поверхностей. В связи с развитием науки и техники открываются новые возможности для проведения исследований и разработок в области совершенствования как технологии, так и оборудования с целью гарантированного выполнения этих требований.
Развитие элементной базы высокой интеграции и вычислительной техники для информационно-измерительных и управляющих систем существенно повлияло на подходы к решению названной проблемы не только по перечисленным направлениям, но и по направлениям использования теории автоматического управления, теории вероятностей и математической статистики, создания динамического мониторинга, управления и выборочного контроля изделий в реальном времени.
Технические решения в области высокоэффективных технологий, предлагаемые ведущими разработчиками, служат основой повышения производительности механообработки современных высокотехнологичных изделий в машиностроении России.

Представленные издания:

1. Полтавец О.Ф. О станках и станочниках / О. Ф. Полтавец. - М. : Машиностроение, 1984. - 160 с. : ил. - (Кем быть?!).

2. Аверьянова И.О. Эффективное использование металлообрабатывающих станков с ЧПУ / И. О. Аверьянова ; Моск. гос. индустр. ун-т (МГИУ). - М. : МГИУ, 2012. - 305 с. : ил.

3. Некрасов Ю.И. Диагностика процессов нагружения и накопления повреждений инструмента при обработке на станках с ЧПУ / Ю. И. Некрасов, У. С. Путилова, Р. Ю. Некрасов ; Тюм. гос. нефтегаз. ун-т (ТюмГНГУ). - Тюмень : ТюмГНГУ, 2013. - 120 с. : ил.

4. Петрунин В.И. Исследование точности и жесткости механизмов смены инструмента металлорежущих станков / В. И. Петрунин, А. Ф. Денисенко, О. Ю. Казакова ; Самар. гос. техн. ун-т. - Самара : Самар. гос. техн. ун-т, 2012. - 177 с. : ил.

5. Андреев Г.И. Работа на станках с ЧПУ. Система ЧПУ FANUC. Работа на токарных станках. Фрезерная обработка / Г. И. Андреев, Д. Ю. Кряжев. - СПб. : ЗАО "Типография "Взлет", 2007. - 84 с. : ил.

6. Лобанов Д.В. Подготовка режущего инструмента для обработки композиционных материалов / Д. В. Лобанов, А. С. Янюшкин ; Братский гос. ун-т (БрГУ). - Братск : ГОУ ВПО БрГУ, 2011. - 192 с. : ил.

7. Украженко К.А. Инструментальные системы машиностроительных производств: моногр. / К. А. Украженко. - Ярославль : ИД ЯГТУ, 2015. - 236 с. : ил., табл. - :Библиогр.: 52 назв.

8. Правила безопасности при работе с инструментом и приспособлениями. РД 34.03.204 / ред. А. Деревянко; М-во топлива и энергетики Рос. Федерации. - СПб. : ДЕАН, 2014. - 224 с. : ил. - (Безопасность труда России).

9. Всегда на шаг впереди. ИЗТС: 50 лет на службе Отечеству / под ред. В. Бажанова. - Иваново : Б. и., 2007. - 168 с. : ил.

10. Волосова, М.А. Инструмент высокоэффективных технологий / М. А. Волосова, С. Н. Григорьев, А. Р. Маслов. - М. : ИТО, 2011. - 224 с. : ил.

11. Верещака А.А. Режущие инструменты с модифицирующими износостойкими комплексами [Текст] / А. А. Верещака, А. С. Верещака, М. И. Седых. - М. : ФГБОУ ВПО МГТУ "СТАНКИН", 2014. - 195 с. : ил.

12. Панкратов, Ю.М. Профилирование обкатных инструментов / Ю. М. Панкратов. - СПб. : Политехника-сервис, 2010. - 158 с. : ил.

13. Управление станками и станочными комплексами: учеб. / Б. М. Бржозовский [и др.] ; под ред. В.В. Мартынова; Сарат. гос. техн. ун-т (СГТУ). - Саратов : СГТУ, 2007. - 295 с. : ил.

14. Инструменты и технологическая оснастка фрезерных операций: учеб. пособие для вузов / А. Г. Схиртладзе [и др.]. - Йошкар-Ола : Марийск. гос. техн. ун-т, 2009. - 376 с. : ил.

15. Солоненко, В.Г. Повышение работоспособности лезвийных режущих инструментов / В. Г. Солоненко ; Кубан. гос. технолог. ун-т (КубГТУ). - Краснодар : Изд-во КубГТУ, 2008. - 141 с. : ил.

16. Исследования станков и инструментов для обработки сложных и точных поверхностей: межвуз. науч. сб. / ред. Р.А. Козина; М-во образования и науки Рос. Федерации; Сарат. гос. техн. ун-т (СГТУ). - Саратов : СГТУ, 2003. - 188 с. : ил.

Выставка "СВАРОЧНОЕ ПРОИЗВОДСТВО"

Выставка действует в помещении ФБУ "РНТПБ" с 09.07.2019г. по 15.07.2019г.

Сварочные работы по-прежнему остаются одним из ключевых технологических процессов, обеспечивающих производственно-монтажную деятельность предприятий разного уровня и направленности. Формирование металлических конструкций, ремонт инженерных сетей и оборудования – лишь часть задач, которые решаются посредством сварки. Современный технический уровень реализации таких операций позволяет строго сегментировать функции и методы их выполнения. В то же время сварочное производство остается зависимым от человеческого фактора, поэтому повышаются и требования к специалистам, работающим в этой области.
Существует два основных направления выполнения сварочных операций – на строительно-монтажной или ремонтной площадке и в условиях промышленного производства. В данном случае рассматривается второй подход к организации деятельности сварщика, который имеет определенные особенности. В первую очередь работники сварочных цехов на предприятиях выполняют свои задачи в более выгодных условиях с точки зрения технологического обеспечения. Перед ними стоят четкие задачи формирования соединений в деталях, конструкциях, резервуарах и других заготовках
Можно сказать, специалисты на предприятии работают по конвейерному принципу с четкими параметрами операции, в то время как сварщик на монтажной площадке почти всегда имеет дело с уникальным набором условий и технических задач. Например, ремонт на участке инженерной сети с газопроводом потребует определения оптимального метода операции с учетом внешних условий, характеристик изделия и других факторов. В свою очередь, технология сварочного производства опирается на изначально заданные параметры. Другое дело, что существуют разные технологические методы. Также в условиях промышленного производства есть и свои проблемы, к которым можно отнести несовершенство контроля качества, обеспечение защиты металлов от окисления и выгорания легирующих присадок
К основным техническим задачам такого производства относится формирование прочных соединений, обеспечение герметизации, укрепление швов и отдельных участков конструкций. Решаются эти задачи разными способами – в каждом случае подбирается своя техника сварки. В перечень функций непосредственно сварщика входит контроль производственного процесса, управление оборудованием и аппаратурой, использование вспомогательной оснастки и поддержание рабочего участка в соответствии с правилами безопасности.

Представленные издания:

1. Жизняков С.Н. Ручная дуговая сварка. Материалы. Оборудование. Технология / С.Н. Жизняков, З.А. Сидлин. - М.: ЦТТ ИЭС им. Е.О. Патона, 2007. - 360 с.

2. Зарембо Е.Г. Сварочное производство: учеб. пособие / Е.Г. Зарембо. - М.: Маршрут, 2005. - 240 с.: ил.

3. Кафедра "Технология сварочного производства": традиции и инновации: сб. науч. тр. сотр. каф. за период с 2006 по 2016 гг. / [науч. ред. Ю.С. Коробов]; Урал. федер. ун-т им. Б.Е. Ельцина (УрФУ). - Екатеринбург: УрФУ, 2016. - 296 с.: ил.

4. Михайлицин С.В. Основы сварочного производства: учеб. пособие / С.В. Михайлицин, М.А. Шекшеев, А.В. Ярославцев; Магнитогорск. гос. техн. ун-т им. Г.И. Носова (МГТУ). - Магнитогорск: Изд-во МГТУ им. Г.И. Носова, 2017. - 243 с.: ил.

5. Молодежь - сварке: Х студенческая научно-техническая конференция (Тольятти, 4 апр. 2014 г.): сб. науч. тр. / под ред. В.П. Сидорова. - Тольятти: Изд-во ТГУ, 2014. - 124 с.: ил.

6. Овчинников В.В. Производство сварных конструкций. Сварные соединения с полимерными прослойками и покрытиями: учеб. пособие / В.В. Овчинников, В.И. Рязанцев, М.А. Гуреева. - М.: Форум: ИНФРА-М, 2017. - 216 с.: ил. -(Профессиональное образование).

7. Савинов А.В. Дуговая сварка неплавящимся электродом / А.В. Савинов, И.Е. Лапин, В.И. Лысак. - М.: Машиностроение, 2011. - 477 с.: ил.

8. Сварочные процессы и оборудование: учеб. пособие / В.А. Ленивкин [и др.]; под ред. В.А. Ленивкина; Донской гос. техн. ун-т (ДГТУ). - Ростов н/Д: ДГТУ, 2016. - 305 с.: ил.

9. Шахматов М.В. Производство сварных конструкций: учеб пособие / М.В. Шахматов, Д.М. Шахматов. - Челябинск: Сварка и контроль, 2009. - 183 с.: ил.


Выставка "ТРЕНИЕ И ИЗНОС"

Выставка действует в помещении ФБУ "РНТПБ" с 16.07.2019 г. по 22.07.2019 г.

Проблема трения существует столько же, сколько существует техника. Не менее трети энергии в любой современной машине тратится на преодоление бесполезного трения между ее частями, несмотря на подшипники и системы смазки. Износ деталей в сочленениях в одних случаях нарушает герметичность рабочего пространства (например, в поршневых машинах), в других – нормальный режим смазки, в третьих – кинематическую точность механизма. В результате понижается мощность двигателей, увеличивается расход горюче-смазочных материалов, возникает опасность утечки ядовитых и взрывоопасных продуктов, понижаются точность и чистота обработки изделий на станках. Следует добавить, что все это еще вызывает дополнительные нагрузки, удары и вибрации в сопряжениях и часто становится причиной аварий. Так или иначе, но каждая машина в свое время требует ремонта. Затраты же на него нередко превышают стоимость нового изделия. Как видим, увеличение долговечности и надежности машин при современной насыщенности народного хозяйства техникой становится одной из важнейших проблем научно-технического прогресса.

Представленные издания:

1. Под общей ред. Чичинадзе А.В. Трение, износ и смазка.

2. Хрущов М.М. Трение, износ и микротвердость материалов.

3. Дроздов Ю.Н., Юдин Е.Г., Белов А.И. Прикладная трибология.

4. Гаркунов Д.Н., Мельников Э.Л., Гаврилюк В.С. Триботехника.

5. Шустер Л.Ш., Криони Н.К., Шолом В.Ю., Мигранов М.Ш. Покрытия и смазка в высокотемпературных подвижных сопряжениях и металлообработке.

Выставка "РЕЖУЩИЙ ИНСТРУМЕНТ"

Выставка действует в помещении ФБУ "РНТПБ" с 23.07.2019 г. по 29.07.2019 г.

Инструмент режущий является самым необходимым оборудованием в современном производстве. Одним из основных металлообрабатывающих режущих инструментов является фреза, на которой нарезаются зубья в виде лезвий, играющие в процессе работы основную роль. Токарный режущий инструмент, как упоминалось выше, прошел многовековое усовершенствование, и сегодня выполняет обработку изделий с помощью точения или путем резания во вращающемся режиме.
Основой режущего инструмента станка является резец, сверло, всевозможные развертки, специальные головки для нарезания резьбы и разные другие инструменты. Обработка металла резцом подобна расклиниванию, а сам резец – клину. Резцы бывают различных назначений и имеют разнообразную форму. Они затачиваются под разным углом, в зависимости от того, какой материал будет обрабатываться. Закрепляется инструмент режущий в резцедержателе так, чтобы режущая кромка совпадала с уровнем оси шпинделя. Резцы должны быть тверже обрабатываемой заготовки и не должны
уменьшаться от нагревания.
• Лезвийный инструмент
• Резец — однолезвийный инструмент для обработки с поступательным или вращательным главным движением резания и возможностью движения подачи в нескольких направлениях.
• Фреза — лезвийный инструмент для обработки с вращательным главным движением резания без изменения радиуса траектории этого движения и хотя бы[как?] с одним движением подачи, направление которого не совпадает с осью вращения[источник не указан 1782 дня].
• Осевой режущий инструмент — лезвийный инструмент для обработки с вращательным главным движением резания и движением подачи вдоль оси главного движения резания.
• Сверло — осевой режущий инструмент для образования отверстия в сплошном материале и (или) увеличения диаметра имеющегося отверстия.
• Зенкер — осевой режущий инструмент для повышения точности формы отверстия и увеличения его диаметра.
• Развёртка — осевой режущий инструмент для повышения точности формы и размеров отверстия и уменьшения шероховатости поверхности.
• Зенковка — осевой режущий инструмент для повышения точности формы отверстия и увеличения его диаметра.
• Цековка — осевой режущий инструмент для обработки цилиндрического и (или) торцового участка отверстия заготовки.
• Метчик
• Плашка
• Протяжка
• Ножовочное полотно — многолезвийный инструмент в виде полосы с рядом зубьев, не выступающих один над другим, предназначенный для отрезания или прорезания пазов при поступательном главном движении резания.
• Напильник
• Шевер (англ. shaver) — зуборезный инструмент для шевингования — точноизготовленное зубчатое колесо с канавками на боковых поверхностях зубьев, образующих режущие кромки. Применяются также реечные и червячные шеверы.
• Абразивный инструмент

Представленные издания:

1. Адаскин А.М. Современный режущий инструмент: учеб. пособие / А.М. Адаскин, Н.В. Колесов - 4 изд., стер. - М.: Академия, 2016. - 224 с.: ил.

2. Боровский Г.В. Справочник инструментальщика: справ. / Г.В. Боровский, С.Н. Григорьев, А.В. Маслов; под общ. ред А.Р. Маслова. - М.: Машиностроение, 2007. - 464 с.: ил.

3. Влияние внутренних напряжений на показатели качества сборных режущих инструментов: учеб. пособие / Е.В. Артамонов [и др.]; Тюм. гос. нефтегаз. ун-т (ТюмГНГУ). - Тюмень: ТюмГНГУ, 2016. - 266 с.: ил.

4. Выбор состава и структуры износостойких наноструктурных покрытий для твердосплавного режущего инструмента на основе квантово-механического моделирования: учеб. пособие / Ю.Г. Кабалдин [и др.]. - М.: Инновационное машиностроение, 2017. - 216 с.: ил. - (Для вузов).

5. Лобанов Д.В. Подготовка режущего инструмента для обработки композиционных материалов / Д.В. Лобанов, А.С. Янюшкин; Братский гос. ун-т (БрГУ). - Братск: ГОУ ВПО БрГУ, 2011. - 192 с.: ил.

6. Малышев В.И. Технология изготовления режущего инструмента: учеб. пособие / В.И. Малышев. - Старый Оскол: ТНТ, 2015. - 440 с.: ил.

7. Мокрицкий Б.Я. Управление эффективностью применения металлорежущего инструмента: моногр. / Б.Я. Мокрицкий, Т.И. Усова, Я.В. Конюхова; ФГБОУ ВО "КнАГТУ". - Комсомольск-на-Амуре: КнАГТУ, 2017. - 261 с.: ил.

8.Проектирование металлообрабатывающих инструментов: учеб. пособие / А.Г. Схиртладзе [и др.]. - 2-е изд., стер. -СПб: Лань, 2015. - 256 с.: ил. - (Учебники для вузов. Специальная литература).)

9. Проектирование режущих инструментов: учеб. пособие для вузов / В.А. Гречишников [и др.]; Старый Оскол: ТНТ, 2012. - 300 с.: ил. - (Тонкие наукоемкие технологии).

10. Режущие инструменты: учеб. пособие для вузов / В.А. Гречишников [и др.]. - Старый Оскол: ТНТ, 2009. - 388 с.: ил. - (Тонкие наукоемкие технологии).

11. Режущий инструмент: учеб. для вузов / Д.В. Кожевников [и др.]; под общ. ред. С.В. Кирсанова. - 4-е изд. переработ. и доп. - М.: Машиностроение, 2014. - 520 с.: ил. - (Для вузов.)

12. Солоненко В.Г. Упрочнение металлорежущего инструмента: учеб. пособие для вузов / В.Г. Солоненко, А.А. Рыжкин. - М.: Высш. шк., 2007. - 414 с.: ил. - (Для вузов).

13. Фельдштейн Е.Э. Режущий инструменты. Эксплуатация: учеб. пособие для вузов / Е.Э. Фельдштейн, М.А. Корниевич. - Минск; М.: Новое знание: ИНФРА-М, 2014. - 256 с.: ил. - (Высшее профессиональное образование. Бакалавриат).

Выставка "ПОДШИПНИКИ КАЧЕНИЯ"

Выставка действует в помещении ФБУ "РНТПБ" с 30.07.2019 г. по 05.08.2019 г.

В любом механизме или машине различают два типа подвижных опор: опоры с трением скольжения и опоры с трением качения.
Подшипники качения и подшипники скольжения по-разному сопротивляются движению и так же по-разному определяют изнашивание элементов подвижных опор и поверхностей деталей машин. Тот или другой тип подшипника выбирается исходя из оценки технико-экономических условий эксплуатации машины или конкретных узлов.

Представленные издания:

1. Козлов Г.С. Подшипники качения / Г. С. Козлов. - Пермь : Б. и., 2010. - 168 с. : ил.

2. Подшипники качения : кат. / Минск. подшипник. з-д. - Минск : Б. и., 1993. - 172 с. : ил., табл.

3. Подшипники качения : кат. / Минск. подшипник. з-д. - Минск : Б. и., 1993. - 172 с. : ил., табл.

4. Подшипники качения и свободные детали : кат.-справ. Ч. 1 / сост. М.Л. Жмылевская [и др.]; АО "ВНИИТЭМР". - М. : ИКФ "Каталог", 1997. - 120 с., табл. : ил.

5. Чуб Е.Ф. Крупногабаритные подшипники качения : справ. пособие / Е. Ф. Чуб. - М. : Машиностроение, 1976. - 271 с. : ил.

6. Кошель В.М. Подшипники качения / В. М. Кошель. - Минск : Навука i тэхнiка, 1993. - 255 с. : ил.

7. Мониторинг станков и процессов шлифования в подшипниковом производстве / А. А. Игнатьев [и др.] ; Сарат. гос. техн. ун-т (СГТУ). - Саратов : СГТУ, 2004. - 124 с. : ил.

8. Подшипники. Ч. 13. Методические рекомендации и справочные материалы по замене инофирменных подшипников на аналоги подшипниковых заводов РФ и стран СНГ / под ред. В.А. Кузнецова. - М. : Б. и., 2001. - 67 с. : ил.

9. Королев А.А. Совершенствование технологии изготовления тонкостенных колец подшипников / А. А. Королев, А. В. Королев, А. А. Королев ; Сарат. гос. техн. ун-т (СГТУ). - Саратов : СГТУ, 2004. - 136 с. : ил.

10. Подшипники. Ч. 17. Дополнительные знаки и отличительные признаки в условном обозначении подшипников: Справочник. - М.: Изд-во НИА "Подшипник-МНИАП", 2003. - 52 с.: ил.

Выставка "ЭКОЛОГИЯ"

Выставка действует в помещении ФБУ "РНТПБ" с 06.08.2019 г. по 12.08.2019г.

Современная трактовка понятия экология намного шире, чем в первые десятилетия развития этой науки. В настоящее время чаще всего под экологическими вопросами ошибочно понимаются, прежде всего, вопросы охраны окружающей среды. Во многом такое смещение смысла произошло благодаря всё более ощутимым последствиям влияния человека на окружающую среду, однако необходимо разделять понятия ecological («относящееся к науке экологии») и environmental («относящееся к окружающей среде»). Всеобщее внимание к экологии повлекло за собой расширение первоначально довольно чётко обозначенной Эрнстом Геккелем области знаний (исключительно биологических) на другие естественные, а также гуманитарные науки.
Экология — познание экономики природы, одновременное исследование всех взаимоотношений живого с органическими и неорганическими компонентами окружающей среды… Одним словом, экология — это наука, изучающая все сложные взаимосвязи в природе, рассматриваемые Дарвином как условия борьбы за существование.[4]
Экология — биологическая наука, которая исследует структуру и функционирование систем надорганизменного уровня (популяции, сообщества, экосистемы) в пространстве и времени, в естественных и изменённых человеком условиях.

Представленные издания:

1. Белов С.В. Безопасность жизнедеятельности и защита окружающей среды (техносферная безопасность): учебник / С. В. Белов. - М.: Юрайт, 2010. - 671 с.: ил. - (Основы наук).

2. Горелов А.А. Экология: учеб. пособие / А.А. Горелов. - М.: Юрайт-М, 2001. - 312 с. : ил.

3. Ефремов И.В. Техногенная безопасность: учеб. пособие / И.В. Ефремов, Л.А. Быкова, Е.А. Колобова - Оренбург: Университет, 2013. - 150 с. : ил.

4. Калыгин В.Г. Промышленная экология: учеб. пособие / В. Г. Калыгин. - 4-е изд., переработ. - М. : Академия, 2010. - 432 с. : ил.

5. Карабасов Ю.С. Экология и управление: термины и определения / Ю. С. Карабасов, В.М. Чижикова, М.Б. Плущевский; ред. Ю.С. Карабасов. - М. : МИСИС, 2001. - 256 с. : ил.

6. Новиков Ю.В. Экология, окружающая среда и человек: учеб. пособие / Ю.В. Новиков. - М. : Гранд, 2000. - 317 с. : ил.

7. Радкевич В.А. Экология: учебник / В. А. Радкевич. - 3-е изд., переработ . и доп. - Минск : Вышэйшая школа, 1997. - 159 с. : ил.

8. Рыночные методы управления окружающей средой: учеб. пособие / ред. А.А. Голуб. - М. : ГУ ВШЭ, 2002. - 285 с. : ил.

9. Цгоев Т.Ф. Элементы управления экологической безопасностью на предприятиях и организациях: учеб. пособие / Т.Ф. Цгоев, В.Г. Кокоев - Владикавказ : СКГМИ (ГТУ), 2012. - 342 с. : ил.

10. Челноков А.А. Основы промышленной экологии: учеб. пособие / А. А. Челноков, Л.Ф. Ющенко. - Минск: Вышэйшая школа, 2001. - 343 с. ил.

Выставка "ПРЕССЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 13.08.2019 г. по 19.08.2019г.

В 1797 году Брама построил первый в истории гидравлический пресс. Пресс Брамы послужил образцом для множества других гидравлических приспособлений, изобретенных позже. Вскоре был создан домкрат – устройство для поднятия тяжестей. В 20-е годы XIX века пресс стал широко использоваться для штамповки изделий из мягкого металла. Однако прошло еще несколько десятилетий, прежде чем были созданы мощные ковочные прессы, пригодные для штамповки стальных и железных деталей. Под общим названием "прессование" в технике понимается ряд процессов, имеющую различную сущность в зависимости от стоящих задач: изменение формы материала при постоянстве его массы и объёма; изменение формы и объёма продукта при постоянстве его массы; изменение формы, объёма и массы продукта. Первые два случая имеют цель придать продукту определённую форму и уплотнить его для лучшей транспортабельности, третий - для отжима жидкой фазы. Прессование определяется физико-механическими свойствами продукта и условиями ведения процесса. Физико-механические свойства процесса зависят от вида продукта, его технологической подготовки (размера частиц, вязкость, температура). Условия прессования складывается из режима прессования: давления и продолжительности. При отжиме жидкая фаза перемещается по микропорам продукта, преодолевая при этом сопротивление, возрастающее с увеличением давления прессования. Установлено, что повышение давления выше определённых пределов уже не может повлиять на выход жидкой фазы. Минимально возможное количество жидкой фазы, которое содержится в остатке (выжимке, жмыхе) после длительного изотермического прессования продукта при постоянном давлении, называется равновесным. В зависимости от характера процесса различают процессы периодического и непрерывного действия. По принципу действия нагнетательных механизмов, создающих усилие при прессовании, прессы делят на ленточные, поршневые, шнековые, шестерённые, вальцовые и др. Отделение жидкой фазы (воды, сока, расплавленного жира и др.) прессованием применяется при мойке зерна, переработке фруктово-ягодного сырья и др. Прессы широко применяются в различных отраслях народного хозяйства: машино-, авиа-, авто-, приборостроении, строительстве и пищевой промышленности.

Презентуемые издания:

1. Смирнов А.М., Васильев К.И. Основы автоматизации кузнечно-прессовых машин.

2. Степанов Б.А. Специализированное кузнечно-прессовое оборудование. Учебное пособие.

3. Свистунов В.Е. Кузнечно-штамповочное оборудование. Кривошипные прессы.

4.Бурдуковский В.Г. Оборудование кузнечно-штамповочных цехов.Кривошипные машины.

5.Дмитриев А.М. Специализированные прессы для обработки материалов давлением и их технологическое применение.

6.Харченко В.В. Технологии и оборудование для прессовки и штамповки.

7.Логинов Ю.Н. Инструмент для прессования металлов.

Выставка "ПАРОВОЗЫ"

Выставка действует в помещении ФБУ "РНТПБ" с 20.08.2019 г. по 23.08.2019 г.

ПАРОВОЗ — автономный локомотив с паросиловой установкой, использующий в качестве двигателяпаровые машины. Паровозы были первыми передвигающимися по рельсам транспортными средствами, само понятие локомотив появилось гораздо позже и именно благодаря паровозам. Паровоз является одним из уникальных технических средств, созданных человеком, и роль паровоза в истории трудно переоценить. Так, благодаря ему появился железнодорожный транспорт, и именно паровозы выполняли основной объём перевозок в XIX и первой половине XX века, сыграв колоссальную роль в подъёме экономики целого ряда стран. Паровозы постоянно улучшались и развивались, что привело к большому разнообразию их конструкций, в том числе и отличных от классической. Так, существуют паровозы без тендера, без котла и топки, с турбиной в качестве двигателя, с зубчатой трансмиссией. Однако с середины XX века паровоз был вынужден уступить более совершенным локомотивам —тепловозам и электровозам, которые существенно превосходят паровоз по экономичности. Тем не менее, паровозы ещё продолжают работать. Паровозная тяга использовалась в СССР в регулярном железнодорожном сообщении до середины 1970-х годов. По данным историка железной дороги В. А. Ракова на поездной грузовой работе паровозы использовались до 1978 года. В дальнейшем паровозы работали на некоторых второстепенных участках железных дорог. В Латвийской ССР на маршрутах Плявиняс — Гулбене и Рига — Иерики —Пыталово паровозы серии Л водили грузопассажирские поезда как минимум до 1980 года. На участке Питкяранта — Олонец в Карелии паровозы серии Эр водили грузовые поезда до 1986 года. На перегоне Рославль I — Рославль II паровоз серии Л работал с грузовыми составами в 1989 году. Отдельные паровозы в некоторых регионах страны использовались на манёврах в железнодорожных депо и узлах, так же на промышленных предприятиях вплоть до начала 1990-х, некоторые, в частности паровоз ОВ-324, работают до сих пор. Дольше остальных задержались на паровозной тяге некоторые узкоколейные железные дороги страны. После массового исключения паровозов из парка в СССР, в 1960—70-х гг. некоторая часть из них была пущена на слом, другая часть отправилась на многочисленные базы запаса локомотивов, где они были законсервированы, а некоторые, как например часть паровозов серии ФД, были переданы за рубеж. Кроме этого, после списания, паровозы часто использовались в качестве котельных в локомотивных депо или на промышленных предприятиях, а также устанавливались в качестве памятников на железнодорожных станциях, вокзалах и депо. В настоящее время паровозы в основном используются исключительно в ретропоездах, имеющих развлекательно-познавательную функцию.

Представленные издания:

1. Бернштейн А.С. Паровозы серии У / А.С. Берншейн. - М.: Ж.-д. Дело, 2008. - 60 с.: ил.

2. Джонсон Р. Паровоз. Теория, эксплуатация, экономика, сравнение с тепловозами: пер. с англ. / Р. Джонсон; под ред. А.А. Чиркова. - М.: Машгиз, 1947. - 504 с.: ил.

3. Макаров Л. Паровозы серии Э / Л. Макаров. - М.: Железнодорожное Дело, 2009. - 400 с.: ил.

4. Москалев Л. Узкоколейные паровозы. Россия /Л. Москалев, В. Боченков, С. Дорожков. - М.: Железнодорожное Дело, 2012. - 416 с.: ил.

5. Прозоров Н.К. Паровозы. Уустройство, работа, ремонт: учеб. пособие для техн. школ. / Н.К. Прозоров, М.Б. Вигдорчик, Э.К. Гребенкин. - М.: Транспорт, 1986. - 368 с.: ил.

6. Ремонт паровозов и паровых котлов: учеб. для ПТУ / А.П. Третьяков [и др.]. - 2-е изд., перераб. и доп. - М.: Высш. шк., 1974. - 366 с.: ил.

7. Суржин С.Н. Управление паровозом и его обслуживание: учеб. для техн. школ. / С.Н. Суржин, К.Е. Климентьев. - М.: Транспорт, 1978 - 261 с.: ил.

8. Тищенко В.Н. Паровозы железных дорог России (1837-1890): в 2 ч. Ч.1 / В.Н. Тищенко. -М.: Б.и., 2008. - 272 с.: ил.

9. Тищенко В.Н. Паровозы железных дорог России (1837-1890): в 2 ч. Ч.2 / В.Н. Тищенко. -М.: Б.и., 2008. - 272 с.: ил.

10.Хмелевский А.В.Паровоз (Устройство, работа и ремонт): учеб. для техн. школ / А.В. Хмелевский, П.И. Смушков. -2-е изд., перераб. и доп. - М.: Транспорт, 1979 - 414 с.: ил.

Выставка "КУЗНЕЧНОЕ ПРОИЗВОДСТВО"

Выставка действует в помещении ФБУ "РНТПБ" с 26.08.2019 по 30.08.2019

Кузнечное дело — это профессия для сильных людей. Для тех, кто привык к изнурительным нагрузкам и жару раскалённого горна. Для тех, кто днём и ночью не отходит от наковальни. Для тех, кто родился с молотом в руках. Раньше, в древние времена, эта профессия являлась очень почётной и востребованной. За эту работу брались только очень сильные люди, так как труд был очень изнурительным. Но, с появлением механических машин, надобность в этом деле отпала. Кузнечное дело — профессия, посредством которой можно крафтить латные доспехи и оружие. Для того, чтобы создавать предметы, нужно находиться рядом с наковальней и обладать кузнечным молотом. В связи с тем, что кузнечное дело использует для создания предметов руду, идеальной профессией в пару к нему является Горное дело. Раньше кузнецы могли специализироваться на создании оружия или на создании брони, что позволяло им создавать улучшенные виды экипировки. С помощью молота и наковальни мастеровитые кузнецы могут создавать смертельное оружие, кольчугу и латные доспехи, а также другие, особые предметы. За счет своей профессии кузнецы могут экипироваться сами (особенно если они носят тяжелые доспехи) и помочь экипироваться товарищам по группе или гильдии. Кроме того, кузнецы могут продавать свои изделия на аукционе. Для большинства доспехов и оружия кузнецу требуется кузнечный молот и наковальня. Навык кузнечного дела позволяет обрабатывать слитки металлов, выплавленные шахтерами, превращая их в оружие и доспехи. Кузнецы создают уникальные металлические вещи, которые не могут быть куплены у торговцев, а так же улучшения для брони, точильные камни и множество других полезных вещей. Наилучшим дополнением к кузнечному делу является шахтерство. Для развития кузнечного навыка требуется огромное количество разнообразной руды. Кузнечное ремесло является очень древним. Археологические находки показывают, что уже в каменном веке наши далекие предки обрабатывали самородные металлы и метеоритное железо при помощи каменных ударных инструментов. В I тыс. до н. э. кузнечная обработка в сочетании с термической обработкой были хорошо известны предкам славян, жившим на территории Древней Руси. Кузнечное дело, первое среди всех ремесленных специальностей, вызвало необходимость специально оборудованного помещения, отделенного от жилища ремесленника. Уже в IV-V вв. н. э. позднедьяковские кузнецы на территории Волго-Окского междуречья работали в специальном нежилом помещении — кузнице. Кузницы, по соображениям противопожарного характера, располагались на окраинах города у городского вала. Они были оборудованы горном и воздуходувными мехами.
В представленных на выставке изданиях приведены сведения об основных современных кузнечных и штамповочных операциях и производственных методах контроля качества поковок и штамповок, рассмотрены вопросы их термической обработки. Изложены общие положения по проектированию машиностроительных заводов и цехов, а также последовательность проектирования цикловых механизмов загрузки рабочей зоны технологических машин.

Представленные издания:

1. Максименко А.Е., Проскуряков Н.Е. Автоматизация кузнечно-штамповочного производства.

2. Семенов Е.И., Субич В.Н., Феофанова А.Е. Проектирование кузнечных и листоштамповочных цехов.

3. Матвеев А.С., Кочетков В.А. Справочник кузнеца.

4. Смирнов А.М., Васильев К.И. Основы автоматизации кузнечно-прессовых машин.

5. Степанов Б.А. Специализированное кузнечно-прессовое оборудование. Учебное пособие.

6. Свистунов В.Е. Кузнечно-штамповочное оборудование. Кривошипные прессы.

Выставка "ТЯЖЕЛОЕ МАШИНОСТРОЕНИЕ"

Выставка действует в помещении ФБУ "РНТПБ" с 02.09.2019 г. по 06.09.2019 г.

Машиностроение – главная отрасль обрабатывающей промышленности. Именно эта отрасль отражает уровень научно-технического прогресса страны и определяет развитие других отраслей хозяйства. Современное машиностроение состоит из большого числа отраслей и производств. Предприятия отрасли тесно связаны между собой, а также с предприятиями других отраслей хозяйства. Машиностроение, как крупный потребитель металла имеет широкие связи, прежде всего, с черной металлургией. Территориальное сближение этих отраслей дает возможность металлургическим заводам использовать отходы машиностроения и специализироваться в соответствии с его потребностями. Машиностроение также тесно связанно с цветной металлургией, химической промышленностью и многими другими отраслями. Продукция машиностроения потребляется всеми, без исключения, отраслями народного хозяйства. В настоящее время в структуре машиностроения насчитывается 19 самостоятельных отраслей, куда входят свыше 100 специализированных подотраслей и производств. К комплексным самостоятельным отраслям относятся: тяжелое, энергетическое и транспортное машиностроение; электротехническая промышленность; химическое и нефтяное машиностроение; станкостроение и инструментальная промышленность; приборостроение; тракторное и сельскохозяйственное машиностроение; машиностроение для легкой и пищевой промышленности и т.д. Заводы тяжелого машиностроения обеспечивают машинами и оборудованием предприятия металлургического, топливно-энергетического, горнодобывающего и горно-химического комплексов. Предприятия отрасли выпускают как детали и узлы (например, валки для прокатных станов), так и отдельные виды оборудования (паровые котлы или турбины для электростанций, горно-шахтное оборудование, экскаваторы). В состав отрасли входят следующие 10 подотраслей: металлургическое машиностроение, горное, подъемно-транспортное машиностроение, тепловозостроение и путевое машиностроение, вагоностроение, дизелестроение, котлостроение, турбостроение, атомное машиностроение, полиграфическое машиностроение. Производство металлургического оборудования, занимающее первое место в отрасли по стоимости продукции, расположено, как правило, в районах крупного производства стали и проката. Подотрасль выпускает оборудование для агломерационных фабрик, доменные и электроплавильные печи, а также оборудование для прокатного и дробильно-размольного производства. Профиль заводов горного машиностроения – машины для разведки, а также открытого и закрытого способов добычи, дробления и обогащения твердых полезных ископаемых на предприятиях черной и цветной металлургии, химической, угольной, промышленности и промышленности строительных материалов, транспортного строительства. Предприятия горного машиностроения производят горнопроходческие и очистные комбайны, роторные и шагающие экскаваторы. Продукция подъемно-транспортного машиностроения имеет большое экономическое значение, так как на погрузочно-разгрузочных работах в промышленности, на строительстве, транспорте и в других отраслях народного хозяйства занято около 5 млн. человек, притом больше половины – ручным трудом. Подотрасль производит мостовые электрические краны, стационарные и ленточные конвейеры, оборудование для комплексной механизации складов. Тепловозостроение, вагоностроение и путевое машиностроение обеспечивает железнодорожный транспорт магистральными грузовыми, пассажирскими и маневровыми тепловозами, грузовыми и пассажирскими вагонами и т. д. Эта подотрасль производит также путевые машины и механизмы (укладочные, рельсосварочные, снегоочистительные и др.). Турбостроение, поставляющее для энергетики паровые, газовые и гидравлические турбины. Заводы подотрасли выпускают оборудование для тепловых, атомных, гидравлических и газотурбинных электростанций, газоперекачивающее оборудование для магистральных газопроводов, компрессорное, нагнетательное и утилизационное оборудование для химической и нефтеперерабатывающей промышленности, черной и цветной металлургии. Атомное машиностроение специализируется на выпуске корпусных реакторов и другого оборудования для АЭС. Полиграфическое машиностроение имеет наименьший объем товарной продукции в отрасли и производит печатные станки, конвейеры для типографий и т.д.

Представленные издания:

1. Крюков А.В., Колмогоров Д.Е. Автоматизированное проектирование сварных металлоконструкций в машиностроении.

2. Ловыгин А.А., Теверовский Л.В. Современный станок с ЧПУ и CAD/CAM система.

3. Таратынов О.В., Базров Б.М., Клепиков В.В., Аверьянов О.И., Новиков О.А., Герасин А.Н. Проектирование технологий машиностроения.

4. Салтыков В.А., Аносов Ю.М., Федюкин В.К. Технологии машиностроения.

5. Тюленев Л.В. Организация и планирование машиностроительного производства.

Выставка "ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА"

Выставка действует в помещении ФБУ "РНТПБ" с 09.09.2019 г. по 16.09.2019 г.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется. Персональный компьютер быстро вошел в нашу жизнь. Компьютеры в буквальном смысле совершили революцию в деловом мире. Они находят применение при выполнении широкого круга производственных задач. Компьютеры используются для контроля за температурой и давлением при осуществлении различных производственных процессов. Также управляются компьютером роботы на заводах, скажем, на линиях сборки автомобилей, включающие многократно повторяющиеся операции. Проекты конструирования самолета, моста или здания требуют затрат большого количества времени и усилий. Они представляют собой один из самых трудоёмких видов работ. Сегодня, в век компьютера, конструкторы имеют возможность посвятить своё время целиком процессу конструирования, поскольку расчёты и подготовку чертежей машина «берёт на себя». Пример: конструктор автомобилей исследует с помощью компьютера, как форма кузова влияет на рабочие характеристики автомобиля. С помощь таких устройств, как электронное перо и планшет, конструктор может быстро и легко вносить любые изменения в проект и тут же наблюдать результат на экране дисплея. В настоящее время многие врачи используют компьютер в качестве помощника при постановке диагноза. «Машинное обучение» – термин, обозначающий процесс обучения при помощи компьютера. Компьютеры используются правоохранительными органами как в информационных сетях ЭВМ, так и в процессе розыскной работы. Наиболее универсальное средство компьютерного общения – это электронная почта. Она позволяет пересылать сообщения практически с любой машины на любую, так как большинство известных машин, работающих в разных системах, ее поддерживают. Для многих мир без компьютера – далекая история. И каждый раз, включая компьютер, невозможно перестать удивляться человеческому гению, создавшему это чудо.

Представленные издания:

1. Мелехин В.Ф., Павловский Е.Г. Вычислительные машины, системы и сети.

2. Келим Ю.М. Вычислительная техника.

3. Калинкина Т.И., Костров Б.В., Ручкин В.Н. Телекоммуникационные и вычислительные сети. Архитектура, стандарты и технологии.

4. Рассоха А. Компьютеры.

5. Гагарина Л.Г., Теплова Я.О., Румянцева Е.Л., Баин А.М. Информационные технологии.

6. Мухутдинов А.Р., Вахидова З.Р., Окулин М.В. Основы прикладного программирования в Microsoft Visual Studio.

7. Фуфаев Д.Э., Фуфаев Э.В. Разработка и эксплуатация автоматизированных информационных систем.

8. Шаньгин В.Ф. Защита компьютерной информации.

9. Под ред. Назарова А.В. Эксплуатация объектов сетевой инфраструктуры.

Выставка "CALS-ТЕХНОЛОГИИ"

Выставка действует в помещении ФБУ "РНТПБ" с 17.09.2019 г. по 27.09.2019 г.

CALS-технологии подразумевают всестороннюю информационную поддержку товара от начального этапа производства вплоть до выработки и состояния непригодности. Виртуальное предприятие с интегрированной средой данных позволяет получить общие способы настройки конфигурации для каждого участника производственного процесса. Заказчики, поставщики и ремонтники смогут иметь доступ к любым данным касательно устройства. Интегрированная информационная среда – это сервер, где хранится все связанное с работой каждого отдела предприятия, ответственного за производство и последующую эксплуатацию. Применение таких систем позволяет:
хранить данные в едином экземпляре с облегченным доступом;
воспрепятствовать перекодировке и несанкционированным изменениям данных;
снизить вероятность ошибок и сбоев;
оптимизировать трудовой процесс, сократив потребление времени и денег.
Технология CALS по многим параметрам отличается от современных способов изготовления продуктов и их сервисного обслуживания:
ликвидация потребности в бумажных носителях и применение электронной подписи;
возможность одновременного внесения изменений;
интеграция поддержки во все периоды производства и изменений.

Представленные издания:

1. Современные инструментальные системы, информационные технологии и инновации: материалы 2-й Междунар. науч.-практ. конф., 20 - 22 мая 2004 г. / отв. ред. Е.И. Яцун; Курск. гос. техн. ун-т. - Курск : Б. и., 2004. - 175 с. : ил.

2.Современные проблемы науки в машиностроении: учеб. пособие / А. Н. Афонин [и др.]. - М. : Спектр, 2010. - 262 с. : ил.

3.Соломенцев Ю.М Моделирование производительных систем в машиностроении / Соломенцев, Ю.М., В. В. Павлов. - М. : Янус-К, 2010. - 227 с. : ил.

4.Интегрированные системы управления качеством в автоматизированном производстве: учеб. / А. Г. Лютов [и др.] ; под общ. ред. А.Г. Лютова. - М. : Машиностроение, 2015. - 632 с. : ил.

5.Анцев А.В. Технологии поддержки жизненного цикла изделий машиностроения: учеб. пособие / А. В. Анцев, Н. В. Анцева, О. А. Ямникова ; Тульский гос. ун-т (ТулГУ). - Тула : Изд-во ТулГУ, 2016. - 192 с. : ил.

6.Лазутин Ю.Д. Качество жизненного цикла промышленных изделий: учеб. / Ю. Д. Лазутин. - М. : Изд-во МГТУ им. Н.Э. Баумана, 2016. - 219 с. : ил.

7.Фуфаев Э.Д. Компьютерные технологии в приборостроении: учеб. пособие / Э. В. Фуфаев, Л. И. Фуфаева. - М. : Академия, 2009. - 336 с. : ил. - (Высшее профессиональное образование).

8.Технология машиностроения и материаловедение: материалы междунар. науч.-практ. конф. № 1 / [гл. ред. И.А. Жуков]; Науч.-исслед. центр "МашиноСтроение". - Новокузнецк : НИЦ МС, 2017. - 153 с. : ил.

9.Некоторые вопросы применения современных информационных технологий в промышленности/ Г. В. Фисичев [и др.] ; Рос. гос. техн. ун-т им. К.Э. Циолковского "МАТИ". - М. : МАТИ, 2008. - 104 с. : ил.

10.Компьютерно-информационные технологии в двигателестроении: учеб. пособие / А. И. Яманин [и др.] ; под ред. А.И. Яманина. - М. : Машиностроение, 2005. - 480 с. : ил. - (Для вузов).